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Abstract

Artificial intelligence (AI) has been increasingly deployed in business operations over the

past decade. While AI productivity in normal times has been extensively studied, direct evi-

dence of its effectiveness in uncertain contexts is limited. Our work fills this gap by examining

the contribution of AI to corporate resilience under natural disaster shocks, particularly con-

centrating on AI-using and goods-producing firms. We measure firm AI investment by the

cumulative AI-relevant skills extracted from a comprehensive job posting database. We gauge

firm resilience with the changes in corporate valuation in response to operational shocks in-

duced by natural disasters. Using a pooled event study approach, we provide evidence that

AI generates resilience: an average firm that equips 2.4% of total jobs to be AI-related could

approximately recover the full damage of disasters reflected in corporate valuation over a short

event window. Then, we discuss mechanisms under the framework of an adapted production

function model. Combined with an instrumental variable that integrates baseline firm-specific

task structure and task-specific AI suitability over time, we find consistent evidence that, dur-

ing turbulent periods, AI deployment moderates the decreased responsiveness of firm output

to both labor and capital inputs in the production process. An array of sub-sample analyses

reveals a pressing phenomenon: although underperforming firms could benefit more from

an additional unit of AI investment, the realized productivity is notably restrained due to a

lack of complementary organizational designs. Overall, our study makes a distinct contribu-

tion compared to prior literature that focuses on AI productivity while assuming certainty or

homogeneous factor elasticity. Our findings provide managerial implications regarding the

interplay between environmental conditions and firm investments in both AI technology and

complementary infrastructures.

Keywords: artificial intelligence, firm resilience, uncertainty, natural disasters, job posting, market

return, production function



1 Introduction

With the rapid development of computing power, data availability, and breakthroughs in mathe-

matical models and algorithms, artificial intelligence (AI) has become increasingly popular within

corporate organizations in various industry sectors. In addition to the tech giants at the forefront of

this revolution, such as Google and Microsoft, companies in traditional industries are also gradu-

ally participating in the revolution. They have recruited and utilized AI in product manufacturing

and business operations. For instance, General Motors analyzes camera images of assembly robots

to discover signs and indications of malfunctioning robotic components to prevent unplanned out-

ages. Danone Group, a French multinational food producer, uses machine learning systems to

improve coordination across marketing, sales, supply chain, and finance management, obtaining

a 30% reduction in lost sales and product obsolescence.1

This new wave of AI-related concepts has drawn tremendous attention from both the capital

market and academia. According to GlobalData estimates, the AI market could generate sales of

$190 billion by 2025, up from $67 billion in 2021, with an increase of 184% and a compound annual

growth rate of 38%.2 With such a large amount of money poured into this market, it is crucial

to understand the impact of AI investments on economics and business. An extensive literature

studies this question from different aspects, including labor market (Felten et al. 2019, Agrawal

et al. 2019, Acemoglu and Restrepo 2020, Acemoglu et al. 2022), innovation performance (Cockburn

et al. 2019, Babina et al. 2024), investment management (D’Acunto et al. 2019, Hendershott et al.

2021), retail operations (Bajari et al. 2019), and so on. Most existing literature focuses on AI value

in normal times (Aghion et al. 2018, Haltiwanger 2019). However, given the current high-velocity

environment characterized by disruptive upheavals from pandemics, political upheavals, military

operations, or climate changes, a better understanding of how to deal with such unrest becomes

more urgent. Nevertheless, our understanding is still limited in this respect.

In this paper, we specifically investigate AI effectiveness on firm resilience under natural

disaster-induced uncertainty shocks to fill this gap. Firm resilience — the ability of a firm to

successfully confront the unforeseen,3 and to restore normal operations within an acceptable

period of time after being disturbed (Christopher et al. 2004) — becomes more and more important

in today’s ever-changing environment (Chakravarty et al. 2013, Ambulkar et al. 2015, Bai et al.

2021). As algorithms advance, in comparison to traditional data techniques and platforms, AI

(represented by machine learning, natural language processing, computational intelligence, etc.)

1https://www.forbes.com/sites/louiscolumbus/2020/05/18/10-ways-ai-is-improving-manufacturing-in-2020/

?sh=cd0f7391e85a
2https://www.bankrate.com/investing/emerging-technology-investing/
3https://hbr.org/2007/08/building-a-resilient-supply-ch
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is endowed with promises to adapt to and overcome the challenges. On the one hand, despite the

hype around AI, some might question its usefulness for aiding firm operations, especially in the

context of high uncertainty where the information on which AI is dependent is largely unknown

or imperfect. Due to the inherent noise, incompleteness, and inconsistency along the process of

conducting operational-relevant tasks, the effect of AI might be undermined. Sources of threat lie

in the data generation (e.g., variance in environmental conditions), data collection (e.g., concerns

related to survival bias), objective identification (e.g., the ever-changing purpose and objective

functions), or task integration (e.g., the complexity of organizing sub-tasks into complete process).

These various aspects of uncertainty render a lack of confidence in the resulting analytic process

and decisions made thereof.

On the other hand, AI incorporates flexible modeling architectures and is able to learn from

examples and form statistical reasoning to find associations in data. With the help of advanced

computational theories (e.g., active learning for finding better training labels, reinforcement learn-

ing for automatically refining objectives and goals, fuzzy theory for dealing with large spaces of

possibilities), AI-based learning is potentially an advantageous tool for prediction and decision-

making support, especially under great uncertainty. A survey of AI startups documents that the

most applicable and advantageous practice of AI is to make predictions and aid decisions (Bessen

et al. 2018). Researchers have also suggestively implied that AI could improve forecast accuracy,

mitigate prediction biases and uncertainties, and thus enhance resource deployment and opera-

tional efficiency (Brynjolfsson et al. 2011, Mihet and Philippon 2019, Agrawal et al. 2018, 2019).

Industrial examples of AI battling uncertainty include pharmaceutical firms using AI to predict

whether an ingredient will arrive on time and how the delay will affect production, or retail in-

dustries using AI to take into account data from weather forecasts and other disruptions to usual

shipping patterns to find alternate routes and make new plans that won’t disrupt normal business

operations. A specific case in point is Biogen’s recovery from the impact of Hurricane Maria on its

production plan in Puerto Rico. Applying the prediction algorithm learned from prior experience

of natural disasters, Biogen successfully forecasted the landfall in advance, promptly created a war

room to pinpoint the supply-chain threats, and therefore secured productions in due time. As a

result, its stock price recovered and even surpassed the prestorm price within 15 days of Hurricane

Maria’s strike.4

Combining these equivocal arguments, we aim to empirically assess AI’s impact on firm re-

silience during challenging periods and identify specific conditions. Focusing on goods-producing

4https://www.mckinsey.com/industries/life-sciences/our-insights/four-ways-pharma-companies-can-make-their-
supply-chains-more-resilient
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sectors where AI serves as an auxiliary technology support rather than a direct profitable output,

our goal is to measure the influence of uncertainty on firm performance and explore AI’s role in

alleviating disruptions caused by uncertainty. Essentially, our research questions cover: 1) how

firms are affected by uncertainty shocks, and 2) whether AI helps mitigate uncertainty-induced

disruptions, and through what channel.

To measure the level of uncertainty, we exploit a near-universe record of natural disasters and

generate a continuous variable of firm-exposure-weighted uncertainty induced by these exogenous

events. Notably, unlike previous studies that use a firm’s headquarter location to determine if it

is exposed to disasters, we carefully look into county-level operating sites, enabling us to better

identify both extensity and intensity of disaster shocks. To measure firm-level AI investments,

we employ a comprehensive dataset of online job postings and identify the ones requiring AI-

relevant skills. In addition, through job postings with complementary requirements or in different

occupations, we offer more discussions on granularity and dynamics.

We start with the test for AI injecting resilience among firms undergoing disaster-induced

uncertainty shocks. Since natural disasters normally happen within a few days, ideally we need an

identification strategy that captures high-frequency dynamics. Changes in the firm’s stock return

in the financial market provide an appropriate setting. Financial return symbolizes readjustments

in the general expectation towards a firm’s future performance in the incidence of unexpected

events such as natural disasters as we focus, thus well reflecting the firm’s ability to confront the

unforeseen (Bai et al. 2021). During three short windows before, in, and after the disaster befallen,

we compare return performances between firms with different levels of uncertainty exposures and

different levels of AI intensity. Our evidence suggests that firms with higher AI intensity have

more moderate loss, as well as more positive returns compared to peers with lower AI intensity.

An intensity of 2.4% (out of 100 cumulative job postings, 2.4 being AI-related) could approximately

recover the full slides in shareholder return in the event of severe shocks.

After presenting the evidence of AI-empowered resilience with high-frequency analyses at the

firm-by-date level, we next explore the working mechanisms under the framework of an adapted

production function with a firm-by-year-by-quarter panel. By allowing the factor elasticity to

vary across contexts, we find that conditional on uncertainty level, firms with higher AI intensity

generate more production outputs in response to each unit of labor or capital. Such elasticity-

enhancing effect stays consistent after controlling for alternative explanation variables and strictly

fixed effects at the level of NAICS2-by-year-by-quarter and firms. To address the endogeneity

concern of AI investment being self-selective among firms, we construct an instrumental variable

that combines the baseline firm-specific task structure with the task-relevant AI growth among
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peers. To further remove the confounding impact from general IT investment, we specifically

control for skills regarding data analytics, cloud computing, and robotics. Results are replicated

with the same directions and similar magnitudes.

In an effort to pin down essential channels that matter for both theory and practices, we attempt

to explore ways of deploying AI-relevant skills in real operations. However, we acknowledge a

major limitation in our study thus far that we are vague about how these skills are practically used in

each position for each task, and how these skill-aided tasks contribute to the performance outcome.

To tackle this challenge, we resolve to provide more granularity in understanding AI deployments

by digging into various contingencies, including the specific occupations that require such skills,

firm fundamental characteristics, operational conditions, and complementary hiring strategies.

Split-sample analyses reveal a thought-provoking finding. Firms with poorer performance or

larger constraints in previous periods could potentially benefit from greater responsiveness of

production outputs to each unit of AI injection. However, due to a lack of complementary

investment, the actual realized productivity of these firms appears to be consistently lower than

their counterparts. These findings together imply a promising future of AI especially for under-

performing businesses, reaping the benefits of which, however, requires more systematic and

strategic input designs.

From untabulated results, we recognize that our findings of AI injected resilience do not per-

sist through all contexts, two of which are worth attention. First, while we present AI-enabled

resilience among a sample of firms that are primarily using AI for goods production in the paper,

we do not find similar effects among firms that are in the services industries or that are inventing

AI. Second, while we present consistent evidence of AI-enabled resilience under the uncertainty

shocks induced by natural disasters, we do not find similar effects for uncertainty shocks induced

by technological disasters such as cybersecurity attacks and industrial accidents. Plausible ex-

planations are that, for these other contexts, our measurement of job posting-based geographic

composition is not sufficiently indicative as discussed later in Section 3.3, or that the general op-

erations and recovery processes are inherently different. A thorough investigation is beyond the

scope of this paper.

Overall, this study connects to the literature on the productivity of IT especially emerging

technologies, encompassing three main contributions. First, we spotlight AI in the context of un-

certain environments, which is operationalized by our identification of natural disasters. Second,

we present evidence of resilience with a financial market-based measure of firm performance from

a high-frequency firm-by-date panel and an accounting-based measure of firm performance from

a fundamental firm-by-quarter panel. Results from both sets of analyses corroborate each other,
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providing a complete picture of market reaction on firm production. Third, we propose an instru-

mental variable that combines and adapts two widely used instruments in extant literature for AI

investment or AI adoption at the firm level. Through extensive analyses, we echo some tentative

results from previous literature, while offering new perspectives regarding corporate valuations

and management practices.

2 Related Literature

In this section, we review three related research streams in the literature. We start from our

overall research context regarding environmental uncertainty and firm resilience. We then review

the productive value of general information technology and data-driven decision-making. We

discuss their respective characteristics, the existing findings, and how our focus on AI differs from

the concerns in extant literature. We finally provide a comprehensive review of the burgeoning

literature specific to AI.

2.1 Environmental Uncertainty and Firm Resilience

Environmental uncertainty generally refers to the volatility and unpredictability of the changes

that a business has to deal with (Miller and Friesen 1983, Keats and Hitt 1988). Multiple sources

and measurements of external uncertainty have been considered in previous literature. Keats and

Hitt (1988) exploit different levels of dynamism, competitiveness, and complexity to conceptual-

ize the uncertainty degree in a firm’s market environment. Baker et al. (2016) uses the natural

language from mainstream media to quantify the uncertainty in aggregate economics. These char-

acterizations of uncertainty are undoubtedly important and relevant to business management.

One common concern, however, is whether and to what extent such uncertainty is endogenous to

firm operations. Since these measurements somewhat embed firm actions, it could be challenging

to tease out the true origin of volatility and unpredictability.

Our study contributes by operationalizing the external environmental condition with a contin-

uous measure of uncertainty induced by exogenous shocks from natural disasters. In addition to

providing a new perspective on the definition of environmental uncertainty, this way of construc-

tion offers a clean and exogenous cause that is less likely to be reversely or simultaneously affected

by firm production choices. Such natural-disaster-based indices have been constructed to study

the firm-level idiosyncratic shocks. Limitation resides in prior literature that some only select one

disaster event, such as the 2011 Japan Earthquake (Hendricks et al. 2020), and some only use a

firm’s headquarter location to identify whether it is impacted by disasters (Barrot and Sauvagnat
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2016). These two approaches are undesirable due to a lack of generality and lack of preciseness in

the measurement. In our paper, we aim to provide a new and more accurate identification strategy

that is based on the universe of natural disasters on record and firms’ recruitment locations at the

county level.

Under the various measurements of environmental uncertainty, previous literature unani-

mously defines resilience as the ability to maintain the original function despite internal or exter-

nal disruptions (Kitano 2004) or to return to normal operating performance within an acceptable

period of time after being disturbed (Christopher et al. 2004). For example, Toyota was able to

resume production at 29 plants just 3–4 days after the Kobe earthquake of 1995 (Fujimoto 2011).

The measure of resilience in the existing literature is either focused on supply chain-specific indices

or elicited from corporate surveys and interviews (Reichhart and Holweg 2007). Our study differs

in this dimension by statistically exploring the concept of “resilience” from stock return analyses.

Under the assumption that financial market return reflects real-time forward-looking information

about firm operations, the dynamics of stock returns during uncertainty-intensive periods present

a chance to quantitatively gauge the market-perceived firm’s capability of handling disruptions.

Following the general practice in the literature of environmental uncertainty and firm perfor-

mance, our testing logic starts by investigating if the proposed measure of uncertainty does cause

a materially negative impact on the proposed measure of firm operations, then proceeds to ask

whether our crucial variable, AI investment, help mitigate the negative influence of uncertainties.

2.2 Value of IT and Data-driven Decision Making

Our paper belongs to the enormous literature on the value of information technology (IT): IT-

enabled knowledge networks improve worker performance (Aral et al. 2012); IT-enabled innova-

tions create value at an intermediate stage of production (Kleis et al. 2012); IT-enabled capability

reshapes firm boundaries horizontally and vertically (Hitt 1999). Among the literature on general

productivity, some studies have focused on IT effectiveness in dealing with dynamic and uncertain

contexts. It is well documented that IT can enhance organizational resilience through speeding

up decision-making (Oh and Lucas Jr 2006), facilitating entrepreneurial and adaptive actions (Lu

and Ramamurthy 2011, Chakravarty et al. 2013), and enabling digital options (Sambamurthy et al.

2003).

We contribute to the literature with a particular interest in an emerging technology, Artificial

Intelligence (AI). Although they share some similarities, AI differs from general IT in major aspects.

The function of IT is to reduce costs and to improve efficiency in coordinating, communicating, and

monitoring a wide range of economic activities within and between firms (Hitt 1999), whereas the
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function of AI mainly concentrates on generating predictions and aiding decision-making. While

the benefit of reducing costs is proven to be the dominant advantage of IT, that of AI is by no

means conclusive. In addition to the aspect of cost-reduction, a growing literature has delved into

the potential of AI in creating larger premiums and opportunities for firm productions (Agrawal

et al. 2022). We aim to contribute towards this direction and uncover the possibility of using AI in

the face of rising turbulence and volatility.

Our paper also contributes to the burgeoning research in data-driven decision-making (DDD,

hereafter). Despite the many similarities between AI and DDD, there are some nuanced differences

that could make an impact in generating conclusions and managerial implications. First, DDD

refers to the general use of data in firm practices, measured by the extent of data availability and

data usage within a firm (Brynjolfsson and McElheran 2016), whereas AI leans towards applications

where machines, normally as a combination of data and algorithms, learn to perceive, analyze,

determine response and act accordingly in their environment (a standard definition of AI (Zolas

et al. 2021). With less human discretion and behavioral biases, this improved automatic learning

capability of machines foresees larger potential in handling turbulence and uncertainty. Second,

regarding the adoption, empirical evidence consistently suggests rapid and widespread diffusion

of DDD (Brynjolfsson and McElheran 2016), whereas the diffusion of AI in firm practices is found

to be rare and generally skewed towards larger and older firms (Zolas et al. 2021). Third, DDD is

unanimously proven to be beneficial for firm management, whereas AI is still undergoing debates

regarding the contextual dependencies varying from human, organizational, to environmental

factors.

In this paper, we borrow the framework of studying general DDD with a specific focus on

emerging AI-based technology. Instead of trying to draw the boundary between DDD and AI or

quantify the productivity differences between DDD and AI, we aim to explore empirically valid

patterns among large-scale public firms and discuss some nuanced findings that might spur future

research.

2.3 Effects of AI

Prior literature on the effects of AI has been mostly theoretical and has largely focused on the

level of an aggregate economy. Using structured models, past researchers have discussed the

potential implications of AI on income distribution and labor demand (Korinek and Stiglitz 2017,

Acemoglu and Restrepo 2018), economic growth process (Aghion et al. 2018), and long-term impact

on future societies (Sachs and Kotlikoff 2012). Although AI has the potential to be an innovation

that can lead to breakthroughs, Brynjolfsson et al. (2019b) find that since the late 1990s, measured
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productivity growth has declined, and real income has stagnated. There are two types of empirical

studies in this debate on whether AI can increase productivity. One focuses on a specific AI

skill and investigates its effectiveness in a particular business. For example, Brynjolfsson et al.

(2019a) specifically focus on machine translation and provide causal evidence that introducing AI

applications significantly increased international trade on a digital platform. The other stream

studies the general AI value across industrial sectors. For example, Babina et al. (2024) study the

economic impact of AI technology investments among U.S. firms and showed a product innovation

channel through which AI facilitates firm growth. Our research supplements this discussion by

focusing on the general AI value on a firm’s resilience, or the effectiveness of AI in firms facing

severe natural disasters.

By revealing AI effects on firm performances under turbulent environments, we contribute to

firm resilience literature. Gupta (2020) finds that innovation capability makes a firm more resilient

by providing product differentiation. Bai et al. (2021) show that public firms with higher work-

from-home feasibility perform significantly better during the COVID-19 pandemic. Pavlou and

El Sawy (2010) reveal that IT enables competitive advantage in turbulence through better resource

management and team collaboration. Our paper adds AI investments as another factor that can

improve firm resilience by providing prediction power and helping efficient decision-making.

The rest of the paper proceeds as follows. In Section 3, we describe the data sources for

constructing the measure of AI intensity and uncertainty shocks and provide summary statistics

of major variables and features of our analytical sample. Section 4 presents the evidence of AI-

empowered firm resilience in a high-frequency firm-by-date setting. Specifically, we detail the

construction of a pooled event study to examine the changes of the firms’ stock returns. Section

5 offers the mechanism explanation regarding channels through which AI injects resilience: an

adapted production function is built in Section 5.1, robustness tests whereby an instrumental

variable is used and the general IT investment is controlled for are respectively discussed in

Section 5.2 and Section 5.3. Section 6 explores heterogeneity across firms, and Section 7 concludes.

3 Data and Measures

In this section, we describe our sample inclusion process, the datasets, and the construction of key

variables – AI intensity and uncertainty shock. Summary statistics are provided.
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3.1 Sample

In this study, we focus on U.S. publicly traded firms with two-digit North American Industry Clas-

sification System (NAICS2, hereafter) codes equal to or less than 49, including sectors of agriculture,

mining, utilities, construction, manufacturing, wholesale trade, retail trade, transportation, and

warehousing. Our rationale for this sample inclusion is three-fold. First, to achieve our goal of

studying the impact of AI on AI-using firms rather than AI-producing firms, common practices

are specifically excluding professional and business services and information technology sectors

(Acemoglu et al. 2022), or only including manufacturing companies (Brynjolfsson et al. 2021).

We strike a balance between avoiding AI-producing firms and maintaining more observations by

considering the classification based on economic activities. Second, data on production inputs and

outputs in these sectors have been well established over time, supporting a rich exploration of

productivity dispersion in a well-understood setting (Bartelsman and Doms 2000, Syverson 2011).

Third, we are implicitly constrained by our employment-based measurement of the geographical

risk exposure of a firm. Further explanations are provided in Section 3.3.

Regarding the sample construction process, we start from the full sample of firms in BGT

(details in next section) and exclude those that have fewer than ten job posts through the whole

data period (January 2010 to December 2019). Then, we merge with the dataset from the Center

for Research in Security Price (CRSP) and from S&P Compustat to obtain stock price and firm

fundamentals for U.S. publicly traded firms. We exclude observations with missing values in

concerning variables 5 and exclude firms with NAICS2 code equal to or greater than 50 to obtain

the sample of interest.6 In total, we obtain 3137 firms.

We provide summary statistics in Table 1. The distributions of major characteristics for the

firms in our data are presented in Panel A and compared against that for all publicly traded firms

in the Compustat dataset in Appendix A. The comparison indicates that our in-analysis firms

over-sample larger and more profitable firms. In addition to the selection bias of posting online

among different-sized firms (Acemoglu et al. 2022), removing firm observations with missing key

production inputs (such as assets, working capital, and employees) also leads to slightly biased

representativeness. However, the industry composition, as reflected by NAICS2 distribution,

suggests good coverage of the U.S. economy. The distributions of job posting-related variables

5Since our concerned variables are all fundamental indices, the total number of firm-quarter observations with
missing values thus being excluded is small. In untabulated results, we impute missing values with the average among
firms in the same NAICS2 industry. Results are consistent.

6In later analysis of pooled event-study, we provide estimation results for firms in sectors with NAICS2 code equal
to or greater than 50. Null effects support our precondition that natural disaster tends to be a source of disruptive
uncertainty for firms with tangible operations, i.e., inputs and/or outputs are material and subject to environmental
situations.
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Table 1: Summary statistics

Min P25 P50 P75 Max Std. Dev.
Asset 2.42 128.11 593.72 2969.45 416073.70 21507.76
Cash 0.01 19.40 62.04 204.11 24051.03 1491.97
Sales 0.00 15.30 128.95 615.70 121759.40 4890.35
Cost of goods sold 0.00 12.58 78.20 391.95 89117.22 3895.34
R&D expense 0.00 1.56 7.07 21.51 6855.56 264.41
# employees 0.00 0.16 1.22 6.33 2222.22 49.98
Working capital -11298.44 24.37 111.06 368.79 42480.80 1937.54
Revenue-to-asset -50.04 -0.11 0.00 0.04 23.26 1.56
Book-to-market 0.05 0.53 0.97 1.78 345416.30 6278.39
Debt-to-asset 0.00 0.10 0.21 0.35 5.37 0.26
# total posts 0.00 0.33 2.86 28.22 20079.33 683.05
# AI posts 0.00 0.00 0.00 0.11 101.44 3.17
AI intensity (%) 0.00 0.00 0.00 0.23 15.23 1.01
# bachelor posts 0.00 0.11 1.22 9.78 1572.78 87.78
# master posts 0.00 0.00 0.00 0.33 604.00 12.17
Master intensity (%) 0.00 0.00 0.00 2.22 34.78 5.89
# doctoral posts 0.00 0.00 0.00 0.11 427.44 10.97
Min required experience 0.00 0.26 0.63 1.20 15.00 1.25

# firms # total posts # AI posts AI intensity (%) Firms with AI (%) Master Intensity (%)
2011 2563 63.32 0.30 0.16 8.12 2.55
2012 2629 54.69 0.22 0.25 7.38 2.24
2013 2650 89.88 0.36 0.25 8.42 2.09
2014 2619 152.71 0.44 0.31 9.74 1.87
2015 2581 140.22 0.48 0.37 10.46 1.89
2016 2537 140.21 0.57 0.40 11.55 2.21
2017 2484 150.39 0.92 0.58 14.49 2.61
2018 2384 169.19 0.93 0.72 13.42 2.39
2019 2253 162.61 1.16 0.79 16.42 2.18

Min P25 P50 P75 Max Std. Dev.
Duration (days) 1 3 4 7 47 6.69
Total damage (Thousands USD) 7.81 12.31 13.83 14.71 18.55 1.93
Insured damage (Thousands USD) 10.95 12.43 13.77 14.43 17.39 1.30
Uninsured damage (Thousands USD) 0.00 0.30 0.45 0.69 2.25 0.46
# firms affected 56 88 453 562 872 188.26

Panel B: Temporal changes of key variables

Panel A: Characteristics of in-sample firms (N=3137)

Panel C: Characteristics of in-sample disasters  (N=141)

Notes: Panel A presents characteristics of in-sample firms. The industry distribution categorized by NAICS2 code is: 11 (0.38%), 21
(7.81%), 22 (3.60%), 23 (2.10%), 31-33 (71.09%), 42 (4.18%), 44-45 (7.01%), 48-49 (3.83%). Panel B presents the time series of key variables.
Panel C presents the characteristics of in-sample disasters. The frequency of each disaster type is: storm (116), flood (17), wildfire (4),
extreme temperature (2), earthquake (1), volcanic activity (1).
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(details in next section), including the number of any posts or AI-related posts, the number of posts

requiring at least a bachelor’s, master’s, or doctorate degree, and the minimum required working

experiences, suggest great dispersion among in-analysis firms, offering a large enough variation

to make meaningful statistical inferences about the effects of AI across firms.

3.2 AI Intensity

We use an online job vacancy dataset provided by Burning Glass Technologies (BGT, hereafter)7

that covers the time from January 2010 to December 2019. BGT tracks a near-universe of all web-

sites that contain job postings in the United States and records the postings in a machine-readable

form after parsing and removing duplicate postings. It covers about 60-70% of job vacancies in

the U.S., either online or offline. Each post contains detailed information about the standard occu-

pation classification (SOC) code, county-level geographical location, detailed skill requirements,

education and experience requirements, and firm identifiers. The BGT dataset has been used in

several recent studies to analyze occupational demand and labor market outcomes (Modestino

et al. 2020, Deming and Kahn 2018, Hershbein and Kahn 2018, Acemoglu et al. 2022, Braxton and

Taska 2023). In particular, Carnevale et al. (2014) conduct a comprehensive examination and con-

clude that BGT’s online job postings correlate strongly with job openings in the entire job market

and provide a good measure of employment demand.

Since human capital is an input into technology development and diffusion, skills listed in

job posts should reflect firms’ intentions to engage with emerging technologies (Goldfarb et al.

2023). Therefore, we consider a job posting as an AI job if it requires at least one AI-related skill.

To identify AI-related skills in nearly 17,000 unique skills that are presented in job postings, we

use a skill taxonomy developed by BGT. This taxonomy identifies AI-related skills based on a job

description’s skill requirement. Specifically, the taxonomy looks for the presence of words and

phrases that are commonly associated with AI knowledge (e.g., deep learning, image processing,

speech recognition, etc.) or AI-related tools (e.g., TensorFlow, Random Forests, etc.). The same

identification of AI-related jobs is also used in Goldfarb et al. (2023) and Alekseeva et al. (2021).

Appendix B provides a complete list of AI-related skills. Note that although job posts are not

equivalent to actual labor recruitment, previous literature has well established that emergent

technology diffusion can be measured using labor demand data (Tambe and Hitt 2012a,b).

We measure the intensity of AI investment at the firm-date level by calculating the number of

AI-related posts (#AI Posts) normalized by the number of total posts (#Total Posts) announced by

7Burning Glass Technologies is renamed to Lightcast (https://lightcast.io/) after a recent acquisition.
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firm i within the one-year rolling period (τ = 365)8 before the start date d(e) of disaster e, as shown

in the following expression:

AI Intensityi,e =

∑d(e)−1
t=d(e)−τ #AI Postsi,t∑d(e)−1

t=d(e)−τ #Total Postsi,t

×100 (1)

It is worth noting that this construction of AI intensity measured with job posts is a good

proxy for comparing AI investment and adoption across firms (Acemoglu et al. 2022, Alekseeva

et al. 2021, Babina et al. 2024). One may have concerns about the job nature of the hiring postings

and worry that the AI investment calculated from job postings can be overestimated since job

vacancies posted are not necessarily fulfilled, or underestimated since AI job postings do not

capture AI capital gain through M&A. Babina et al. (2024) show that the AI postings align well

with the actual hiring of AI talent, validated by a resume dataset.9 Another concern might relate

to the potential discrepancy between this flow-type measure (i.e., only considering the past rolling

periods) and a stock-type measure (i.e., considering all skills ever demanded during the whole

period). We calculate a set of stock-type measurements with the perpetual inventory method in

Appendix G and the coefficient estimates are robust. Based on the cross-sectional distribution in

Panel A and inter-temporal changes in Panel B, we conclude although AI-related posts are rare

and AI intensity is generally low, there is notable variation across firms and over the years, with

the portion of firms having at least one AI-related posts increases from 8.12% in 2010 to 16.41% in

2019, and the intensity increases nearly five times. This rising trend in AI differs from job posts

requiring general high education, such as a master’s degree, implying that the effect of AI-related

posts is less susceptible to the confounding variation from high-education-related investment.

3.3 Uncertainty Shock

We operationalize the uncertainty shocks with exogenous occurrences of natural disasters. We ob-

tain the universe of natural disasters archived in the EM-DAT, the International Disaster Database

that was created with the support of the Centre for Research on the Epidemiology of Disasters

(CRED) and the World Health Organization (WHO).10 It documents essential core data on over

22,000 mass disasters worldwide from 1900 to the present day, collected from various sources,

8In the main text, we present results with one-year rolling AI-intensity, i.e. τ = 365. As robustness checks, we
additionally present regression results using 3-month (τ = 90), 6-month (τ = 180), 18-month (τ = 540), and 24-month
(τ = 720) rolling periods in Appendix E.

9Another widely-used AI investment measure is the AI-related patents. However, such measurement is not suitable
for our study since it is very likely to overlook firms that are exploiting AI during operations but not inventing AI as
outputs.

10See https://www.emdat.be for more details.
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including the United Nations agencies, non-governmental organizations, insurance companies,

research institutes, and news presses. It is widely used in climate research (Thomalla et al. 2006)

and economic studies (Klomp 2014).

We start with 233 disaster events that occurred in the U.S. from January 2010 to December

2019. For identification and measurement purposes, we focus on well-defined sudden-impact

disasters by filtering out disaster records that have missing values in start or end dates (such as

droughts that develop gradually over a longer time period), in affected locations, or in estimated

economic damages. Combining firms’ exposure to each disaster event, we further remove the

events that no firms have been exposed to. After filtration, we have 141 disasters in our analyzed

sample, consisting mainly of storms and floods. Panel C of Table 1 presents the characteristics of

in-sample disasters, including the disaster duration, the inflation-adjusted damages, the number

of people affected, and the count of events under each categorical type.

We construct a continuous index of uncertainty shocks at the firm-by-disaster level with the

following expression:

Shocki,e =DisasterSeveritye×
∑

c∈C(e)

FirmExposurei,e,c (2)

where DisasterSeveritye is measured with the inflation-adjusted total economic damages of disaster

e renormalized to have the highest value of 1.11 To address the concern that some disasters can

be easily predicted and managed, thus not contributing to more uncertainty, we run robustness

checks using only the uninsured portion of total economic damage as a proxy for disaster severity

(shown in Table 3). Then, for each firm i, we weight the severity by FirmExposurei,e,c, i.e., the

firm’s varying exposure to disaster-struck counties C(e).12 Specifically, we use the geographic

distribution of firm job posts across counties in the one-year rolling period to gauge the extent of

firm exposure, as expressed below:

11The raw damages are divided by the maximal value, hence the largest value of re-scaled disaster severity is 1. This
normalization has no influence on coefficient estimates since the scaled factor is only a constant number. In addition, we
should note a caveat regarding our data limitation that the documented economic damage is largely under-reported. As
quoted from the EM-DAT documentation, “figures tend to be available only for high-impact disasters in countries with
insurance and reinsurance coverage. The insured damage is usually reported by reinsurance companies that publish
figures about disaster losses, e.g., MunichRe, SwissRe, or AON. When insured damage is reported, the total damage
is generally reported from the same source for consistency”. Such under-reported statistics presumably have limited
impact on our estimated effects, because we focus on the United States where majority of the regions are covered by
insurance and reinsurance, and because we include fixed effects at the disaster level to account for disaster-specific
conditions throughout all analyses.

12Due to the dataset limitation, we cannot specify county-level severity for each disaster. Instead, we use the total
damage and consider each affected county equally shocked.
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FirmExposurei,e,c =

∑d(e)−1
t=d(e)−τ #Total Postsi,c,t∑

c∈C
∑d(e)−1

t=d(e)−τ #Total Postsi,c,t

(3)

where d(e) indicates the start date of event e, τ indicates the number of days in the rolling period,13

C indicates all counties, #Total Posts indicates the total count of all job posts. By considering firm

exposure before event occurrence, we alleviate the concern of firm strategic hiring in response to

disasters. As robustness checks, instead of job posts from the BGT dataset, we use establishment-

level sales and employees from the NETS dataset (details in Appendix D) to calculate the geo-

graphic exposure variable. We illustrate our construction with a numerical example as follows.

Suppose, over a rolling period of one year (i.e., 365 days before the landfall date t of a disaster

event), firm i has 10 job posts in county c1 (among which 1 is AI-related), 20 job posts in county

c2 (among which 3 is AI-related), 30 job posts in county c3 (among which 5 is AI-related). The

disaster event e hits county c1 and county c3, and has a damage severity of 0.5. By our construction,

AI Intensityi,t = (1+3+5)/(10+20+30)×100 = 15, FirmExposurei,e,c = (10+30)/(10+20+30) = 0.66,

and Shocki,e = 0.5×0.66= 0.33. In the extreme case, Shocki,e equals to 1, indicating that the entire op-

erational sites of a company are exposed to the most severe disaster. For one instance of in-analysis

disaster, Hurricane Sandy (October 22, 2012 to November 2, 2012) caused the largest economic

damage measured by US dollar, with 392 firms being affected and 76 being fully exposed. For

another instance, the tornado outbreak in late April 2014 caused the most widespread impact

measured by geographical area, with 842 firms being affected and 369 being fully exposed.

Our measure of uncertainty shocks captures full-spectrum variations from both event severity

and firm exposure. Compared to previous literature where firm headquarters are used to identify

whether or not the firm is affected, our continuous measure of the firm exposure degree at the

county level offers a more granular picture.14 This granularity enhances the intention of measuring

“uncertainty”. Although the timing of some disaster landfalls is predictable,15 the exact magnitude

and affected area are hard to specify in advance. However, since both the measurements of

13In the main text, we present results with one-year rolling AI-intensity, i.e. τ = 365. As robustness checks, we
additionally present regression results using 3-month (τ = 90), 6-month (τ = 180), 18-month (τ = 540), and 24-month
(τ = 720) rolling periods in Appendix E.

14This measurement comes with a caveat: in order for it to accurately capture geographical risk-exposure, the
distribution of employees across locations should be aligned with the distribution of value-added. Though not fully
secured, our focal sample (i.e., the product-concentrated sectors with NACIS 2-digit ≤ 49) is less likely to suffer from
this measurement error compared to the excluded sample (i.e., the services-concentrated sectors with NACIS 2-digit >
50). For instance, mining outputs align physically with miners, and goods produced align physically with workers at
factory sites; whereas insurance services could be remotely provided by brokers, and transactions between home sellers
and buyers could be enabled by real estate agents located in another county.

15Even when the event timing is predictable, our measurement that considers geographical distribution over one or
more years’ rolling period could relieve the concern since firms are not likely to predict future disasters years ahead.
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uncertainty shock and of AI intensity are factoring in posting-related variation, the concern of

collinearity issues between these two key variables might arise. For example, firms that anticipate

higher threats of uncertainty exposure might take precautionary management practices, leading

to concomitant investment in emerging technologies and AI; or firms that appear to have larger

exposure might naturally be different from peers and demand higher skilled labor. To probe

into this issue, we conduct correlation tests between uncertainty shock and post-based intensity

measures in Appendix C and find no systematic relations. We later conduct our estimation with

the fixed-effect panel analysis, an instrumental variable, and a variety of robustness checks to

formally address measurement error concerns and to add support for a causal interpretation of

the results.

In the following sections, we establish formal estimations with a pooled event specification.

We then explore mechanisms with an adopted production function and heterogeneity tests. To

enhance the causality explanation, we further develop an instrumental variable.

4 Empirical Evidence of AI Resilience

We define “resilience” as the ability to withstand or quickly recover from an exogenous shock

that affects a firm’s normal operations. In order to capture the dynamic changes at a relatively

higher frequency level, we rely on the event study approach to reveal the impact of shocks and

AI on a firm’s daily stock return. Changes in stock return in the financial market reflect a real-

time readjustment of public perception toward firm operations and aggregate performance. If the

market negatively responds to a firm’s stock under disasters, we can conclude that the uncertainty

from shocks has hindered the firm’s development to some extent. If investors value the affected

firms differently with respect to AI intensity, it suggests supporting evidence on AI’s contribution

to firm resilience.

We formally estimate the effect of AI with a pooled event study approach in which each disaster

is considered as an event. For each event, we adopt the difference-in-differences framework and

make an adaptation to include three short time windows: before, during, and after the disaster

shock.16 We pool together all disasters as multiple events and estimate coefficients with the

16For this approach (i.e., using changes in stock return to capture dynamics around disasters) to be valid, we rely on
an assumption that the “disruptive impact” could be timely reflected by the changes in investors’ valuation towards the
firm (thus the changes in the stock market returns). Under the efficient market hypothesis, this assumption normally
holds because natural disasters and the following consequences are public information that could be accessed by the
public with little friction. However, in cases where the firm valuation metrics are very complex, or the damage of
disasters on firm operation takes longer to materialize, the changes of stock prices could lag behind the disaster event.
By referring to previous studies that also use stock return to capture unexpected damages induced by natural disasters
(Chen et al. 2023, Huynh and Xia 2023), and by referring to the fact that our focal sample mainly consists of product-
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following regression specification:17

Returni,e,t =
∑

T=0,1,2

I{t = T}(αtShocki,e+βtAIi,e+γtShocki,e×AIi,e)+Xi,eϕ+µi+θe+εi,e,t (4)

where Returni,e,t is the stock return of firm i at disaster event e in window T, T ∈ (0 : ”be f ore”,1 :

”in”,2 : ”a f ter”). The window length for T = 1 matches the actual duration of disaster e, while

the window lengths for T = 0/2 are set as seven trading days over which markets are likely to

have incorporated changing expectations.18 Shocki,e is the continuous measure of uncertainty level

from firm i in disaster e. AIi,e (shorthand for AI Intensityi,e, hereafter) is the continuous measure of

AI investment of firm i before the disaster e. Xi,e is a series of control variables for time-varying

firm basics, including log-transformed assets, revenue-to-asset ratio, book-to-market ratio,19 and

financial leverage, all at the pre-disaster periods.20 For each event, we maintain the same set

of explanatory variables and only allow changes in coefficient estimates by including dummy

indicators for different time windows. The coefficients αt and βt respectively measure baseline

effects of shock severity and AI investment of firm stock return. The coefficients of interest are γt,

representing the mitigating effect of AI over the event windows. We include fixed effects for each

firm i and each disaster e to control for time-invariant firm unobservables and disaster-specific

unobservables. Since firm fundamental variables vary at the quarter level, we cluster standard

errors within NAICS2-by-year-by-quarter.

, and column (9) considers a sample with the same variable constructions but for firms from

AI-producing and services-oriented sectors as selected by NAICS2 code equal to or greater than

50.

We present the main results in Table 2 for our focal sample (firms from AI-using and goods-

centered companies for whom the evaluation metrics (such as inventory turnover rate, gross margins, etc) are easily
materialized and thereby observed in a shorter time window, we believe such concern is limited in our setting. If the
impact indeed takes longer time to realize, any effects we find from a short time window would potentially serve as a
lower bound of the true aggregate impact.

17We acknowledge that this identification and specification may suffer from potential issues about multiple treatment
periods and continuous dosage in DID design. We discuss these issues in Appendix K and provide evidence to show
the low heterogeneity in our treatment effects.

18As robustness checks, we provide results in Appendix E with window lengths being three, seven, ten, and fifteen
trading days. The short length tends to generate volatile results and the longer length tends to smooth out potential
variations, though the sign and magnitude of coefficient estimates stay consistent.

19Book-to-market ratio roughly equals to the inverse of Tobin’s Q, which is widely studied in previous literature to
measure firm performance (Cheng et al. 2021). Since it is a forward-looking measure that accounts for the intangible
and long-term impact of some explanatory factor (Bharadwaj et al. 1999), we consider it as a control variable, while
using the high-frequent stock return as the dependent variable.

20In execution, since we only have firm quarterly fundamental variables, we consider the pre-disaster period to the
last quarter before the disaster occurrence.
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oriented sectors as selected by NAICS2 less than or equal to 49) and a sample of remaining public

firms (firms from AI-producing and services-oriented sectors as selected by NAICS2 equal to or

greater than 49). Columns (1, 6) is our most parsimonious specification, showing baseline stock

returns across three event windows. Columns (2, 7) includes the measurement of shocks, depicting

baseline impacts of the varying severity of disasters. Columns (3, 8) further includes AI intensity

and its interaction with shocks, exploring the baseline and mitigating role of AI. A concern is that AI

may be proxying for investment in general high technology. We address this issue by additionally

controlling for the firm’s investment in general high technology, measured by either the intensity

of job posts requiring at least a master’s degree (columns 4, 9), or the ratio of R&D expense to

total sales (columns 5, 10).21 Through regressions for both firm samples, we find little significance

in the coefficient estimates from the before-disaster windows, justifying parallel trends before the

disaster treatment. From the during-disaster and after-disaster windows, we find a significantly

negative impact of shocks and a positive mitigating impact of AI in our focal sample (i.e., firms

with NAICS2 less than or equal to 49), but nearly null impact in the sample of other firms (i.e., firms

with NAICS2 equal to or greater than 50). The contrast supports our aforementioned arguments

that AI-using firms, compared to AI-producing firms, are more likely to subject to interruptions

by natural disasters. Another possible explanation is the measurement error in our employment-

based variable constructions, particularly in the services-producing sectors (as detailed in Section

3.3 and footnote 14). In this paper, instead of identifying a conclusive explanation for the contrast

between the two sets of firms, we drill down into our focal sample in all following analyses, aiming

to establish the robust evidence of AI resilience and understand the working mechanisms for these

AI-using and goods-producing firms.

We also provide an array of robustness exercises and tests of the validity of our empirical

strategy in Table 3 with our focal sample. We find consistent and robust results when we use the

geographical distribution of lagged one- or two-year sales (columns 1, 2) or employees (columns 3,

4) across establishments to measure firm exposure to each disaster, when we consider only insured

(column 5) or uninsured (column 6) part of economic damage caused by the disaster. Additionally,

in order to test if any sub-sample drives the results, we separately consider three most common

types of disasters (storms in column 7, floods in column 8, and wildfires in column 9), or exclude

the largest firms (column 10). We find consistent estimates with similar magnitude, albeit slightly

lower significance among wildfires that have happened only four times during our sample period.

We find null effects in placebo tests when we randomly set the disaster event dates (column 11).

21Due to the widely documented selection bias in the self-reported R&D expense (Koh and Reeb 2015), we do not
use this measure in our preferred specification.
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Table 2: Evidence of AI resilience from the pooled event study

Sample
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Before-disaster window
!(t=0) -0.225 -0.232 -0.204 -0.205 0.225 -0.570 -0.576 1.243 1.222 2.188

(0.626) (0.626) (0.628) (0.628) (0.893) (0.596) (0.595) (2.229) (2.432) (3.210)
!(t=0) × Shock -0.045 -0.019 0.014 -0.185* 0.219 0.204 0.130 0.023

(0.071) (0.070) (0.072) (0.105) (0.331) (0.135) (0.145) (0.124)
!(t=0) × AI 0.012 0.012 0.014* -0.003 -0.004 -0.007

(0.009) (0.009) (0.009) (0.006) (0.006) (0.006)
!(t=0) × Shock × AI -0.044 -0.037 -0.035 -0.007 -0.016 -0.012

(0.035) (0.034) (0.053) (0.022) (0.023) (0.021)
!(t=0) × HighTech -0.001 -0.091* 0.004 0.174

(0.004) (0.050) (0.007) (0.552)
!(t=0) × Shock × HighTech -0.019 0.103 0.040 -1.392

(0.014) (0.156) (0.038) (1.612)
During-disaster window
!(t=1) -0.016 0.012 0.009 0.005 -0.018 -0.016 -0.005 -0.031 -0.032 -0.178

(0.034) (0.036) (0.036) (0.035) (0.045) (0.032) (0.034) (0.039) (0.041) (0.221)
!(t=1) × Shock -0.398*** -0.552*** -0.551*** -0.462*** -0.196 -0.265 -0.216 0.072

(0.123) (0.123) (0.126) (0.154) (0.152) (0.167) (0.178) (0.164)
!(t=1) × AI 0.007 0.006 0.006 0.001 0.001 -0.006

(0.008) (0.008) (0.010) (0.007) (0.007) (0.010)
!(t=1) × Shock × AI 0.236*** 0.236*** 0.219** 0.031 0.038 0.067*

(0.074) (0.070) (0.105) (0.042) (0.042) (0.039)
!(t=1) × HighTech 0.002 0.021 0.000 0.532

(0.004) (0.060) (0.006) (0.752)
!(t=1) × Shock × HighTech 0.000 0.232 -0.026 0.900

(0.026) (0.260) (0.021) (2.381)
After-disaster window
!(t=2) -0.026 -0.011 -0.010 -0.014 -0.016 -0.011 -0.016 -0.021 -0.012 -0.072*

(0.031) (0.035) (0.034) (0.033) (0.045) (0.028) (0.030) (0.034) (0.036) (0.039)
!(t=2) × Shock -0.211** -0.291*** -0.270*** -0.139 -0.094 -0.129 -0.089 -0.005

(0.095) (0.094) (0.096) (0.127) (0.132) (0.146) (0.156) (0.128)
!(t=2) × AI -0.001 -0.002 -0.004 0.001 0.000 0.001

(0.006) (0.006) (0.008) (0.006) (0.006) (0.006)
!(t=2) × Shock × AI 0.122** 0.127*** 0.132* -0.008 -0.003 -0.000

(0.049) (0.047) (0.079) (0.026) (0.027) (0.023)
!(t=2) × HighTech 0.002 -0.022 0.005 -0.363

(0.002) (0.053) (0.005) (0.745)
!(t=2) × Shock × HighTech -0.011 -0.284 -0.021 0.884

(0.018) (0.216) (0.018) (2.330)
!"# 417897 417897 417897 417897 210703 268422 268422 268422 268422 134259
!2 0.42 0.42 0.42 0.42 0.48 0.36 0.36 0.37 0.37 0.38
Control: Time-varying basics Y Y Y Y Y Y Y Y Y Y
FE: Firm + Disaster Y Y Y Y Y Y Y Y Y Y

NAICS2 <= 49
Stock Return

NAICS2 >= 50

Notes: This table presents the empirical evidence of AI resilience as reflected by stock return changes over three disaster windows:
before (T=0), during (T=1), and after (T=2). We run regressions respectively on firms with NAICS2 less than or equal to 49 (columns
1 to 5) and firms with NAICS2 equal to or greater than 50 (columns 6 to 10). The dependent variable Return and the independent
variable AI Intensity are measured by percentages. The main body of the table can be read as follows: respectively at time T = 0/1/2,
the first section of rows shows the base level of return in the absence of any shock and AI; the second section of rows shows the
impact of shock severity on return; the third section of rows shows the impact of AI on return; the last section of rows shows the
impact of AI on mitigating the relation between shock severity and return. Independent variables are progressively added through
columns (1) to (3) and columns (6) to (8). We further include the firm’s investment in general high technology, measured by either the
intensity of job posts requiring at least a master’s degree (columns 4, 9) or the ratio of R&D expense to total sales (columns 5, 10). All
specifications control for time-varying firm basics, including log-transformed assets, revenue-to-asset ratio, book-to-market ratio, and
financial leverage. Fixed effects are at the firm and disaster levels. * p < 0.1, ** p < 0.05, *** p < 0.01
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In addition, we also vary the choices in event window lengths, the rolling period for computing

firm exposure, and AI intensity. Results are consistent and provided in Appendix E. Collectively,

these robustness tests provide strong evidence that our event-study specification and construction

of shocks capture the first-order effect of uncertainty shocks on firms, and the construction of AI

intensity captures the second-order variation defined as “resilience”.

From our preferred identification (column 4 of Table 2)22, an AI intensity level of 2.4% – out

of 100 cumulative job posts, 2.4 being AI-related, could approximately recover the full damage

of uncertainty shocks on stock returns. To conduct a more granular examination, we plot the

dynamic coefficient estimates of interest in Figure 1 by expanding the observation frequency from

windows to days. The figure suggests that the mitigating effect of AI on shocks is greater in

the during-disaster period than after-disaster period, with a peak in the middle of the disaster

event. Additionally, we further investigate the heterogeneous effects at different levels of AI with

a dose-response function approach (detailed in Appendix L). The results imply that the benefits

of AI increase with its intensity of use and the superstar AI-using firms gain the largest market

premium.

Figure 1: Plot of coefficient estimates of the interaction term between shock and AI
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Notes: This figure presents the coefficient estimates for the interaction term between shock and AI (i.e., the mitigating effect of AI on
disaster-shocked stock return) and their 95% confidence intervals. The regression specification follows column 4 of Table 2 with the
observation frequency expanded from windows to days. Horizontal axis denotes relative days to the start of the disaster (0 being the
day prior to the start). Vertical dotted lines separate before, during, and after disaster periods.

22Since R&D expense variable suffers from the issue of a serious selection bias when firms file the report (Koh and
Reeb 2015), plus the inclusion of which leads to almost one-half decrease in available observations, we do not consider
this variable as our preferred identification.
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Table 3: Robustness checks

Placebo test

Employee 
1yr

Employee 
2yrs Sales 1yr Sales 2yrs Insured Uninsured

Only 
storms 
included

Only 
floods 

included

Only 
wildfires 
included

Largests 
firms 

removed

Random 
event-dates

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)
Before-disaster window
!(t=0) -0.201 -0.200 -0.202 -0.201 0.111 0.106 -0.180 0.333 -0.952 0.106 0.003

(0.628) (0.628) (0.628) (0.628) (0.730) (0.730) (0.646) (1.067) (3.475) (0.730) (0.730)
!(t=0) × Shock 0.458 0.453 0.485 0.484 -0.089 -0.055 0.046 -0.062 0.089 -0.055 -0.160

(0.439) (0.531) (0.399) (0.500) (0.091) (0.061) (0.080) (0.238) (0.431) (0.061) (0.112)
!(t=0) × AI 0.012 0.012 0.011 0.012 0.015 0.015 0.010 0.026 0.032 0.015 0.022**

(0.009) (0.009) (0.009) (0.009) (0.010) (0.010) (0.010) (0.023) (0.038) (0.010) (0.011)
!(t=0) × Shock × AI -0.063 -0.083 -0.044 -0.073 0.004 0.002 -0.032 0.039 -0.336* 0.002 0.089

(0.077) (0.080) (0.078) (0.084) (0.043) (0.027) (0.038) (0.110) (0.176) (0.027) (0.143)
During-disaster window
!(t=1) -0.007 -0.007 -0.006 -0.006 -0.181 -0.175 -0.008 -0.132 0.012 -0.175 0.022

(0.032) (0.032) (0.032) (0.032) (0.232) (0.192) (0.040) (0.093) (0.099) (0.329) (0.022)
!(t=1) × Shock -1.034*** -1.034*** -1.054*** -1.051*** -0.270* -0.232** -0.555*** -0.433*** -0.925* -0.232*** -0.019

(0.273) (0.278) (0.273) (0.277) (0.158) (0.104) (0.142) (0.102) (0.518) (0.654) (0.087)
!(t=1) × AI 0.013* 0.013* 0.013* 0.013* 0.002 0.001 0.010 -0.037* 0.019 0.001 -0.009

(0.008) (0.008) (0.008) (0.008) (0.009) (0.009) (0.009) (0.019) (0.040) (0.009) (0.008)
!(t=1) × Shock × AI 0.189* 0.202* 0.188* 0.203** 0.257*** 0.178*** 0.236*** 0.209*** 0.280 0.178*** -0.030

(0.106) (0.107) (0.102) (0.103) (0.068) (0.046) (0.078) (0.033) (0.180) (0.046) (0.058)
After-disaster window
!(t=2) -0.015 -0.015 -0.015 -0.014 -0.107 -0.106 -0.024 -0.045 0.185 -0.106 0.009

(0.032) (0.032) (0.032) (0.032) (0.211) (0.201) (0.033) (0.086) (0.185) (0.222) (0.020)
!(t=2) × Shock -0.705*** -0.726*** -0.723*** -0.744*** -0.141* -0.109*** -0.322*** -0.390** -0.960 -0.109** -0.001

(0.221) (0.223) (0.221) (0.223) (0.702) (0.029) (0.097) (0.201) (0.823) (0.495) (0.089)
!(t=2) × AI -0.001 -0.001 -0.000 -0.001 -0.004 -0.005 0.002 -0.029 -0.015 -0.005 -0.014

(0.006) (0.006) (0.006) (0.006) (0.007) (0.007) (0.007) (0.022) (0.058) (0.007) (0.009)
!(t=2) × Shock × AI 0.206** 0.220** 0.191** 0.212** 0.116** 0.078** 0.125** 0.111** 0.465** 0.078** 0.025

(0.097) (0.099) (0.097) (0.100) (0.056) (0.038) (0.052) (0.050) (0.222) (0.038) (0.043)
!"# 417897 417897 417897 417897 296841 296841 346607 49382 9393 296841 296841
!2 0.42 0.42 0.42 0.42 0.43 0.43 0.42 0.47 0.61 0.43 0.43
Control: HighTech Y Y Y Y Y Y Y Y Y Y Y
Control: Time-varying basics Y Y Y Y Y Y Y Y Y Y Y
FE: Firm + Disaster Y Y Y Y Y Y Y Y Y Y Y

Robustness

Disaster severity measure Sample selection
Stock Return

Firm exposure measure

Notes: This table reports robustness tests for evidence of AI resilience as reflected by stock return changes over disaster windows. In
this table and thereafter, only firms with NAICS2 less than or equal to 49 are included. Columns (1, 2) and columns (3, 4) replace job-
post-based firm exposure with operation-size-based geographical distribution of sales or employees average over lagged one or two
years from the NETS dataset. Columns (5, 6) separately measure the shock severity with only insured or uninsured portion. Columns
(7) to (9) only use storms, floods, or wildfires. Column (10) removes the largest firms characterized by having a total asset of the top
20%. Column (11) assigns random disaster dates, serving as the placebo test. The dependent variable Return and the independent
variable AI Intensity are measured by percentage levels. All specifications control for the firm’s investment in general high technology
measured by the intensity of job posts requiring at least a master’s degree, and the time-varying firm basics including log-transformed
assets, revenue-to-asset ratio, book-to-market ratio, and financial leverage. Fixed effects are at the firm and disaster levels. Only
coefficients for shock severity and its interaction with AI intensity are presented in the table. Standard errors in parentheses. * p < 0.1,
** p < 0.05, *** p < 0.01
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5 Mechanism Tests

The previous section establishes the evidence of AI resilience from a high-frequency stock return

identification. This section examines the mechanism through which AI empowers firm resilience.

First, we present the estimation function, which is aligned with widely used models of productivity

of technology but accounts for technology-dependent factor elasticity. Then, we discuss identifi-

cation concerns due to possible endogeneity and confounding impact of general IT investment, as

well as the methodologies employed to address these concerns. Finally, we explore heterogeneity

and gauge the varying potential of AI across firms.

5.1 Production Function

To study the contribution of AI to firm operations under uncertainty, ideally we would want

to conduct analysis within the exact corresponding time frame, i.e., firm-by-disaster data panel.

However, we are not aware of any dataset that tracks firm inputs and outputs at such a high

frequency. Thus, we turn to the firm-by-quarter panel retrieved from Compustat that documents

reliable measures of firm accounting variables.23 As for the empirical identification, we refer to

methods from production economics in which relationships between various production inputs,

such as working capital and human labor, and firm output are estimated via a production function.

The productivity test is widely used to study the value of IT, in particular emerging technologies,

in that it theoretically embeds allocative efficiency, directly ties to an important firm outcome

(i.e., performance measured by value added), and the estimates from which are most powerful

statistically when not all firms have made the optimal match (i.e. when firm choices on inputs

and outputs are not fully self-conscious and endogenous) (Wu et al. 2019). To be comparable

and compatible with the bulk of research on the productivity test, we adopt the Cobb–Douglas

specification as the underlying functional form. In the existing literature, the IT component is

either considered as one part of human labor (Tambe and Hitt 2012b) or financial capital (Dhyne

et al. 2020). However, AI is arguably having a broader impact on firms due to its role of mak-

ing predictions and aiding decisions at all levels of firm operation (Agrawal et al. 2022). This

motivates us to consider the AI component being integrated with both existing inputs, labor and

capital. With further empirical evidence suggesting significant variation in factor elasticity among

firms with different risk exposures (Dewan et al. 2007), with different combinations of practices

(Tambe et al. 2012), in different economic circumstances (Tambe and Hitt 2012b), or in different

23We present suggestive argument that our firm-by-quarter panel is able to identify the variation induced by disaster
shocks based on the finding that across-industry heterogeneity is well aligned between firm-by-disaster analysis and
firm-by-quarter analysis. More details are provided in Appendix H.
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market competitiveness conditions (Chang and Gurbaxani 2013), we directly model the elasticity

of production factors to be dependent on uncertainty shocks and AI intensity.24 The specification

is as follows:

VAi,q = C ∗Kαi,q ∗L
β
i,q (5)

where the analysis unit is at the firm-by-year-by-quarter level due to the data availability of major

variables. VAi,q is the value-added (equal to production outputs less cost of production inputs).25

Ki,q and Li,q are respectively working capital and human labor capital of firm i in year-quarter q. C

is the efficiency multiplier that captures intangible assets such as management skill, institutional

knowledge, and learning. We introduce variation of uncertainty shock and AI intensity into the

elasticity of two production inputs:

α =α0+α1Shocki,q+α2AIi,q+α3Shocki,qAIi,q

β =β0+β1Shocki,q+β2AIi,q+β3Shocki,qAIi,q (6)

where Shocki,q is the averaged Shocki,e for disasters happened in quarter q; AI Intensityi,q is the

AI Intensityi,d in which d is set as the start date of quarter q, so that AI Intensityi,q measures

the rolling AI intensity before this current quarter. Note that we include potential variation in

elasticity for both factors, agnostic in advance about whether AI should contribute to capital or

labor productivity. After taking log transformation, we estimate the following regression model:

LnVAi,q = α0LnKi,q+α1Shocki,qLnKi,q+α2AIi,qLnKi,q+α3Shocki,qAIi,qLnKi,q

+β0LnLi,q+β1Shocki,qLnLi,q+β2AIi,qLnLi,q+β3Shocki,qAIi,qLnLi,q

+LnC+θnaics(i),q+εi,q

(7)

24Our motivation for building the variables of interest into factor elasticity in the production function also comes
from a set of reduced-form regressions with the firm-year-quarter panel. We provide details in Appendix F. Various
outcome measures, such as sales, costs, and expense, are regressed on the level of shock severity, AI intensity, and
other independent variables that are argued to be relevant from previous literature. We find null effects from our
variables of interest for explaining the level of inputs (i.e., the amount of costs of goods sold, the amount of expenses)
or the level of outputs (i.e., the amount of sales, the gross margin of goods sold). Rather, we find some notable impact
from AI for mitigating the weakened inventory turnover and asset turnover during shock periods. Therefore, we
are motivated to take a structural approach, i.e., production function, to formally investigate our speculation that AI
mitigates uncertainty through adjusting the efficiency and responsiveness of input usage.

25We used standard methods from the micro-productivity literature to calculate value-added (Dewan et al. 2007).
Price deflators for inputs and outputs are taken from the Bureau of Labor Statistics (BLS) and Bureau of Economic
Analysis (BEA) websites.
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where we include fixed effects at the NAICS2-by-year-by-quarter level to account for time-varying

unobservables across industries. We cluster standard errors at NAICS2 to address possible serial

correlation within the industry.

Table 4 presents the results. We start from the plain version of Cobb–Douglas specification

in column 1, modify the elasticity by adding uncertainty shock and AI intensity in column 2,

and further control for general advanced skills (measured by the intensity of job posts requiring

master’s degree or higher) in column 3 and strong innovations (measured by the ratio of R&D

to sales) in column 4. Several observations emerge. First, the unconditional estimates of factor

elasticity are consistent in magnitude and significance across different specifications, proving

the validity of the Cobb-Douglas function. Second, there is a significantly negative impact of

uncertainty shock on the elasticity of working capital, some on the elasticity of human labor but

with volatile estimations across different inclusions of competing variables. Third, AI has a small,

if any, baseline effect on factor elasticity, but rather consistent mitigation effect when firms are

struck by uncertainty shocks. Fourth, we find no evidence of benefits from general advanced

skills, implying that the effect of AI is separated from employees having higher educations or

general skills, but specific to the AI-related functions. Fifth, we find some evidence from R&D

that higher such expense contributes to greater elasticity of human labor in baseline periods, and

greater elasticity of working capital in uncertain periods, consistent with previous literature that

strong innovations can facilitate employee productivity on average and firm use of working capital

in unexpected situations (Cardona et al. 2013, Hottman et al. 2016, Babina et al. 2024).

By rough estimation, an average firm has an AI-intensity 0.79%, which contributes to approx-

imately 14.15% higher elasticity on working capital and 8.22% higher elasticity on human labor

during uncertainty shocks in the most severe decile, calculated by the coefficients in column 2 as

an example. To absorb more variation in firm-specific total factor productivity, we additionally

add firm fixed effects in columns 5-8. On one hand, the coefficient estimate of unconditional

elasticity decreases substantially (a 28.39% decline in labor elasticity, and a 77.11% decline in

capital elasticity), but is now more precisely estimated. On the other hand, the interaction term

between uncertainty shock and AI remains consistent with comparable magnitude and signifi-

cance, suggesting a non-firm-specific positive effect of AI on improving the responsiveness of firm

value-added to each unit of capital input.26 We present the analyses across different sectors at

NAICS2 level and find the effects most significant among firms in the manufacturing and the retail

26The results in Columns (1-4) are unconditional on firms, allowing for the elasticity coefficients to absorb some
unobserved firm heterogeneity, consistent with prior work that suggested a source of productivity contribution being
slow-changing firm-specific organizational practices (Bresnahan et al. 2002). The results in Columns (5-8) are condi-
tional on firms, removing elasticity components that are persistent at the firm level over time, thus presenting more
conservative econometrically but also likely to substantially underestimate actual impacts of AI-relevant technology.
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Table 4: Production function analyses

(1) (2) (3) (4) (5) (6) (7) (8)
Labor input

Log labor 0.652*** 0.743*** 0.739*** 0.712*** 0.480*** 0.544*** 0.542*** 0.759***
(0.047) (0.052) (0.052) (0.048) (0.052) (0.046) (0.046) (0.079)

Shock × log labor -0.176*** -0.178*** -0.066* -0.095** -0.092** -0.086***
(0.051) (0.051) (0.032) (0.040) (0.041) (0.024)

AI × log labor 0.019 0.016 0.005 -0.004 -0.005 0.012
(0.013) (0.012) (0.018) (0.009) (0.009) (0.018)

Shock × AI × log labor 0.116*** 0.115*** 0.041 0.081*** 0.082*** 0.055
(0.030) (0.029) (0.064) (0.013) (0.014) (0.048)

Capital input
Log capital 0.431*** 0.442*** 0.434*** 0.495*** 0.093*** 0.136*** 0.136*** 0.198***

(0.052) (0.051) (0.051) (0.044) (0.026) (0.029) (0.029) (0.031)
Shock × log capital -0.178*** -0.174*** -0.232*** -0.220*** -0.214*** -0.232***

(0.022) (0.022) (0.027) (0.016) (0.017) (0.027)
AI × log capital 0.009* 0.007 0.008* 0.003 0.003 0.000

(0.004) (0.004) (0.004) (0.003) (0.002) (0.005)
Shock × AI × log capital 0.102*** 0.105*** 0.122*** 0.110*** 0.113*** 0.119***

(0.018) (0.018) (0.037) (0.017) (0.017) (0.033)
Const. -0.577** -0.579** -0.557** -1.068*** 1.512*** 1.413*** 1.416*** 0.866***

(0.232) (0.209) (0.207) (0.165) (0.179) (0.169) (0.170) (0.136)
!"# 51146 51146 51146 26335 51003 51003 51003 26178
!2 0.61 0.66 0.67 0.73 0.79 0.83 0.83 0.85
Control:	HighTech N N Y Y N N Y Y
FE: naics2*year*quarter Y Y Y Y Y Y Y Y
FE: firm N N N N Y Y Y Y

Log value added

Notes: This table reports the productivity test of AI using the firm-by-quarter panel, aiming to investigate the mechanism through
which AI enhances the contribution of each production factor. The dependent variable value added and the independent variables
employee and capital are log-transformed. Shock severity and AI intensity are aggregated at the firm-quarter level, i.e., the average shock
uncertainty from all disasters faced by a firm in each quarter and the average AI intensity for a firm in each quarter. The main body of
the table can be read as follows: respectively for the input factor being labor or capital, the first row shows baseline input elasticity; the
second row shows the impact of shock severity on altering the baseline elasticity; the third row shows the impact of AI on altering the
baseline elasticity; the last row shows the impact of AI on altering the relation between shock severity and input elasticity. The firm’s
investment in general high technology is controlled for and measured by the intensity of job posts requiring at least a master’s degree
(columns 3, 7) or the ratio of R&D expense to total sales (columns 4, 8). Fixed effects are at the NAICS2-by-year-by-quarter level and
additionally at the firm level through columns (5) to (8). Standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01
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trade industries. More details and discussions are documented in Appendix H.

5.2 Instrumental Variable

Measurement of AI intensity using a rolling period of AI-related post intensity will be biased if

there are unobserved factors influencing AI investment that are correlated with the responsiveness

of firm operations to capital, conditional on the included fixed effects. One source of endogeneity

is self-selection, wherein, for example, firms with better management practices or simply with

larger size tend to adopt more AI and meanwhile be more resilient towards uncertainty thanks

to the sagacious management team or the comprehensive support from organizational resources.

Another source of endogeneity is simultaneity or reverse causation, wherein firms dynamically

adjust their level of investment since the elasticity of production factors changes under varying

environmental conditions. Besides endogeneity, the problem of measurement error arises due to

limitations in our job posting dataset that the realized fulfillment rate of AI-related job posts is

unclear and might differ across samples, resulting in our post-based measure being misaligned

with actual AI investment. Although our inclusion of industry-by-time and firm-fixed effects

can absorb systematic errors at these levels, the time-varying fulfillment rates at the firm and

occupation levels cannot be addressed.

To mitigate these firm-level endogeneity concerns, we attempt to isolate the firm-specific

variation that is less vulnerable to the above-mentioned issues and couple it with aggregate

changes in AI-related factors to account for the temporal dynamics. We follow previous literature

(Acemoglu et al. 2022, Felten et al. 2021) and construct a firm structure-based AI exposure as

an instrumental variable for our post-based AI intensity. Their approach calculates an ability-AI

score that considers the compatibility between AI applications and worker abilities (e.g., depth

perception, number facility, and written comprehension), then uses the importance and prevalence

of each work ability across O*NET occupations to construct occupational-level AI exposure, finally,

uses the composition of occupations across firms to construct firm-level AI-exposure. We adopt

this general framework while making two improvements. First, instead of a static measure of

ability-AI scores elicited from subjective surveys, we employ a data-driven method that tracks

the temporal changes in ability-AI scores revealed from aggregate job posts. Second, instead

of characterizing firms with their composition of six-digit occupations, we directly look at their

composition of abilities. By reducing the dimension from 774 (i.e., the number of categories at

the six-digit occupation level) to 52 (i.e., the number of total abilities), we mitigate the volatility

introduced by different posting conducts at the firm-by-occupation level.

With this ability-based AI exposure, two related concerns are still pending, albeit with a small
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probability: if the ability-AI scores seldom vary across time, then the variation in our instrument

could be dominated by firm baseline structure, thus accounting for little changes in AI investment;

if the ability-AI scores indeed vary but managers somewhat foresee the suitability dynamics, firms

might alter its hiring strategy to embrace the changes in advance. Therefore, we run another set of

specifications in which we replace the level of ability-AI scores with the abrupt changes in ability-

AI scores induced by exogenous shocks. As execution, we exploit the sudden releases of the first

major open-source machine learning platform, TensorFlow, that significantly facilitates AI-related

tasks, reduces AI-related skill training costs, and boosts AI-related skill supply. Our evidence

in Appendix J Figure A3 shows that this enhancement of AI varies across abilities, providing an

effective source of exogenous changes in ability-AI scores. Correspondingly, a Bartik-style shift-

share regression using the firm structure-weighted exogenous changes provides robust results in

direction and significance, as shown in Appendix J.

We illustrate the process of instrument construction and the results of corresponding regres-

sions. As the first step, we rearrange the occupation-level job posts to ability-level job posts using

the O*NET 24.1 database released in November 2019:

#Postsi,a,q =
∑
o∈O

#Postsi,o,q×
Lo,a×Ko,a∑

a∈A Lo,a×Ko,a
(8)

where a indexes the ability, o indexes the occupation, and #Postsi,,q indexes the number of job posts

for firm i in year-quarter q measured at either ability- or occupation-level. Following Felten et al.

(2021), we decompose each occupation into 52 abilities based on each ability’s share within that

occupation. The share is calculated by multiplying the prevalence (Lo,a) and importance (Ko,a) for

each ability-occupation pair, scaled so that shares of all abilities within each occupation sum to one.

These prevalence and importance scores, as provided by O*NET, allow us to properly characterize

each occupation by the embedded abilities. Then, we obtain ability-level job posts #Postsi,a,q by

summing over all occupations o ∈O.

With the rearranged dataset with ability-level job posts, our instrumental variable is con-

structed as follows:

IVi,q =
∑
a∈A

BaseSharei,a,q0 ×AI Score−i,a,q (9)

where BaseSharei,a,q0 denotes the baseline (q0 includes 2010Q1 to 2012Q4)27 ability structure for firm

27The selection of baseline being three years is in reference to Acemoglu et al. (2022).
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i, as measured by:

BaseSharei,a,q0 =
#Postsi,a,q0∑

a∈A #Postsi,a,q0

(10)

and AI Score−i,a,q denotes the compatibility between ability a and AI (ability-AI score, hereafter)

for peer firms −i in the same NAICS2 industry with focal firm being left out at year-quarter

q. Different from Felten et al. (2021) where the ability-AI score is a static measure elicited from

subjective surveys, we proxy for a continuous time-series ability-AI score with ability-level AI

intensity averaged among peer firms, as presented below:

AI Score−i,a,q =MEAN(
#AI Posts−i,a,q

#Posts−i,a,q
) (11)

where #AI Posts−i,a,q and #Posts−i,a,q respectively denote the count of AI-related or general posts at

the ability level. Thus, higher AI Score−i,a,q means the ability a is more compatible with AI-related

skills in this industry. For example, the ability of mathematical reasoning has the highest average

AI score, while the ability of dynamic flexibility has a low AI score. Note that this measure of

ability-AI scores does not attempt to measure whether AI is a complement to or a substitute for

this ability, but rather how likely it is that the ability is exposed to AI in some way.

We provide evidence showing that our way of constructing the ability-AI score is consistent

with previous literature, in that the ability-AI scores averaged over time series are highly correlated

with the static ability-AI scores from Felten et al. (2021) (ρ = 0.76,p < 0.001). Meanwhile, our

construction of baseline ability structure appears to be more suitable for characterizing a firm’s

inherent task composition than the occupation-based structure used in Acemoglu et al. (2022).

The ability-based structure explains more variation across firms while remaining stable over time

within a firm.28

To prove the validity of our instrumental variable, we first discuss the relevance condition.

We document that it is highly correlated with post-based AI intensity as measured in Expression

1. The first stage regression in Table 5 shows an F-statistic of 319.54, suggesting large predictive

power from the instrument. In addition, referring to the conclusion from Brynjolfsson et al. (2021),

time-invariant workplace characteristics strongly shape returns to predictive analytics. Moreover,

such contingency may be beyond managerial control, thus creating an inherent and lasting link

between firm structure measured by the workforce and firm adoption of emerging technologies.

We then discuss the exclusion conditions. Note that our instrument contains two sources of

28For each firm-year, we compute a vector representing shares of abilities (or occupations). We then calculate the
correlation of within-firm pairs and across-firm pairs. The higher ratio of within-firm correlation to between-firm
correlation suggests more stability in characterizing the same firm while differentiating from other firms. Such a ratio
equals 1.64 for the ability-based vector and 1.13 for the occupation-based vector.
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variation: the baseline mix of abilities for each focal firm, and the time-series changes of ability-AI

scores averaged among peer firms (with the focal firm being removed). The former variation is

fixed at the baseline years (2010-2012, same as Acemoglu et al. (2022)), thus not susceptible to

confounding the within-firm changes over time. The latter variation comes from leave-one-out

aggregate movements, thus cannot explain the cross-section differences after including NAICS2-

by-year-by-quarter fixed effects. Given that we define peer firms as those in the same NAICS2 code,

and it is not likely for firms to flexibly select into certain peer groups in response to performance

changes, the concern of reverse causality is relieved. However, we provide formal evidence in

Appendix I where we adopt the stricter rule than normal and test if firm fixed effects (considering

both observable and unobservable firm-specific factors) could predict the instrumented AI expo-

sure. Following the suggestion by Bertrand and Schoar (2003), we first regress firm performances

on generic control variables such as firm size as well as fixed effects at the firm level. Then we

retrieve the fitted value of firm fixed effects from above and use it as an explanatory factor for our

instrument. The non-significance of firm fixed effects (as shown in Appendix I) supports no sign

of a reverse causality problem.29

With the instrumental variable, we estimate a two-stage regression model and present the

results in Table 5. The first stage regression (column 1) shows the significant predictive power

of our instrument to AI intensity measured with Expression 1, and generates an estimated AI

intensity for the second stage regression where the specifications follow those in Table 4.30

Table 5 presents that results from instrumented regressions are consistent and robust in terms

of the coefficient magnitude. One notable observation is that the impacts of uncertainty shocks on

factor elasticity and how AI mitigates the negative impacts differ in regressions with fixed effects

only at the industry-by-year level (columns (2)-(4)) versus regressions with additional fixed effects

at the firm level (columns (5)-(7)). This suggests that the mitigating advantage of AI on improving

capital elasticity is only detectable conditional on firm-specific total factor productivity. Given the

empirical evidence of great heterogeneity in total factor productivity across firms (Brynjolfsson

and Hitt 1995, Stiroh 2002, Dhyne et al. 2020), we argue that regressions in columns (5)-(7) are

closer to actual production function forms,31 and that AI brings resilience to uncertainty-struck

29Despite these arguments and tests for exclusion conditions, we should caution that IT-shift correlating with AI-shift
at the ability level is still a valid concern. In the next section, we discuss and explicitly control for IT-related variables
in the hope of partially relieving this concern.

30We standardize the raw and instrumented AI intensity by dividing them by their respective standard deviation.
Hence, coefficients in Table 5 and Table 4 could be interpreted comparably, in that the estimates imply a change in the
outcome variable associated with a standard deviation difference in the explanatory variable.

31We provide another reason why regressions with firm fixed effects contribute to more precise estimations. Com-
pared to the raw measure of AI intensity that considers time-varying firm-specific variation, our instrument variable
considers only time-invariant firm-specific variation. Therefore, the additional inclusion of firm fixed effect under
instrumented regressions fully teases out the potential correlation between explanatory variable and omitted variables,
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Table 5: Causal identification with instrumental variable

AI
(1) (2) (3) (4) (5) (6) (7)

Instrument variable 0.489***
(0.027)

Labor input
Log labor 0.765*** 0.773*** 0.716*** 0.502*** 0.506*** 0.702***

(0.081) (0.079) (0.075) (0.072) (0.073) (0.080)
Shock × log labor -1.367*** -1.272*** -1.029*** -0.570** -0.547** -0.462**

(0.352) (0.322) (0.118) (0.224) (0.222) (0.187)
AI × log labor -0.002 -0.008 0.002 0.020 0.023 0.037*

(0.028) (0.028) (0.031) (0.013) (0.014) (0.020)
Shock × AI × log labor 0.412** 0.384*** 0.307*** 0.157* 0.154** 0.115

(0.134) (0.120) (0.063) (0.072) (0.067) (0.072)
Capital input

Log capital 0.404*** 0.396*** 0.460*** 0.124*** 0.124*** 0.214***
(0.060) (0.058) (0.054) (0.027) (0.027) (0.024)

Shock × log capital -0.201* -0.226* -0.291** -0.389*** -0.396*** -0.428***
(0.105) (0.107) (0.108) (0.043) (0.047) (0.085)

AI × log capital 0.014 0.012 0.014 -0.004 -0.004 -0.016**
(0.009) (0.009) (0.010) (0.004) (0.004) (0.005)

Shock × AI × log capital 0.033 0.036 0.046 0.091*** 0.089*** 0.097***
(0.041) (0.042) (0.040) (0.015) (0.014) (0.027)

Const. 0.297*** -0.526** -0.483* -1.051*** 1.544*** 1.538*** 1.010***
(0.006) (0.236) (0.225) (0.193) (0.165) (0.165) (0.146)

!"# 46649 38894 38894 19874 38722 38722 19701
!2 0.01 0.63 0.63 0.70 0.82 0.82 0.83
Control:	HighTech N N Y Y N Y Y
FE: naics2*year*quarter N Y Y Y Y Y Y
FE: firm N N N N Y Y Y

Log value added

Notes: This table reports the productivity test of AI using the instrumental variable approach. Column (1) shows the first-stage
regression of AI intensity on the instrumental variable. Columns (2) to (7) show the second-stage regressions of fitted AI intensity on
concerning variables. The main body of the table can be read as follows: respectively for the input factor as labor or capital, the first
row shows baseline input elasticity; the second row shows the impact of shock severity on altering the baseline elasticity; the third row
shows the impact of AI on altering the baseline elasticity; the last row shows the impact of AI on altering the relation between shock
severity and input elasticity. The firm’s investment in general high technology is controlled for and measured by the intensity of job
posts requiring at least a master’s degree (columns 3, 6) or the ratio of R&D expense to total sales (columns 4, 7). Fixed effects are at
the NAICS2-by-year-by-quarter level and additionally at the firm level through columns (5) to (7). Standard errors in parentheses. *
p < 0.1, ** p < 0.05, *** p < 0.01

firms mainly through an increase in production responsiveness to one additional unit of financial

capital. This is consistent with results from Table 4 that the coefficients of AI impact on capital

elasticity increase in magnitude and decrease in variance (i.e., more precisely estimated) after

adding firm fixed effects, opposite to the coefficients of that on labor elasticity. Combining these

observations, we conclude that AI benefits on labor-wise productivity are slightly more specific to

firms, while that on capital-wise go beyond the firm-specific features.

Under the preferred specification from Column (6) in Table 5, we calculate the elasticity of

production factors at varying levels of shocks across three different groups of observations that

have an AI intensity at mean, and one standard deviation below or above mean. We visualize

leading to a smaller variance in coefficient estimations.
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the estimations in Figure 2. Two main observations arise. First, conditional on the level of shock,

higher AI investment positively lifts the elasticity of both production factors, with the boosting

effect more significant as the level of shock increases. Second, in response to increasing shocks, as

opposed to the downward slope among low-AI samples, we observe a slight upward trend among

high-AI firms.

Figure 2: Elasticity estimation on different AI intensity levels
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Notes: The figure visualizes the estimated elasticity of input factors from the production function specification. The y-axis on the
left (right) figure denotes the estimated elasticity of labor (capital), i.e., α (β) in Expression 6. The x-axis denotes a varying level of
uncertainty shocks. Three lines mark observations that have an AI intensity at mean, one standard deviation below mean, and one
standard deviation above mean.

5.3 IT as Confounding Factors

While AI-based decision-making is conceptually different from general IT, as discussed in the

section 2.2, we also acknowledge the potential benefits from general IT in handling emergencies.

Some examples might include firms remaining accessible during disrupted events if their data and

systems are hosted in the cloud, or firms being able to function remotely if mobile phones, laptops,

videoconferencing tools, and file-sharing services are properly deployed.32 Hence, given the fact

that AI adoption largely goes hand-in-hand with IT adoption,33, our results could be a proxy for

the value of deploying general IT, instead of AI in specific. In this section, we conduct a battery of

robustness checks to show that our estimates are not driven by these confounders.

First, we explicitly control for general IT-related variables. We leverage our detailed data to

develop measures of investments in non-AI technologies: for each firm, we measure the percent-

age of job postings in the past rolling year requiring general IT or specific IT (including robot-, data

analytic-, or cloud-related skills) that are not specific to AI.34 We include these IT-related variables

32We gratefully thank the review team for providing these examples.
33The correlated shift between AI and IT is also evidenced in previous literature (McElheran et al. 2024) and observed

from the time-series trends we plot with our job-posting data in Appendix C
34We refer to Babina et al. (2024) and define a job post as general IT-related if at least 10% of the required skills are

in the “Information Technology” skill cluster; as robot-related if any of the required skills has the keyword “Robotics”;
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in the production-function specification, with results shown in Table 6. Panel A uses the raw AI

intensity measurement, and Panel B uses the instrumented AI intensity measurement. The esti-

mated relationship between AI intensity and responsiveness of input factors during shock periods

remains similar with the addition of these controls. Notably, the coefficients for instrumented AI

almost stay unchanged across different sets of additional control, meanwhile are consistently more

accurately estimated (as implied by smaller standard errors and larger t-values) compared to that

for raw AI. This provides additional support for the validity of our causal identification: the in-

strumented variation of AI shift is not confounded with that of general IT shifts. Nevertheless, it is

worth mentioning that we do find some significant impact of general IT for the overall operations,

but not particularly for shocked periods. We also spot some positive effects of specific robot-, data

analytic-, and cloud-related technologies, despite being less consistent and smaller in magnitude.

Second, we probe into the potential channels through which AI and IT might contribute to firm

production. If AI is indeed distinct from IT, we should expect to observe differences in terms of the

scenarios where the value of each could surface. As gathered from the existing literature, the merits

of AI potentially stem from its aiding role for cognitive tasks such as decision-making (Alekseeva

et al. 2020, Boyacı et al. 2023), and its preemptive and optimizing capability in operational processes

such as supply chain coordination (Hu et al. 2024, Senoner et al. 2022). Hence, we are motivated

to further distinguish AI- and IT-related posts across different job positions. Specifically, we

consider if a job requires cognitive-related tasks, if a job sits in a decision-maker role, or if a job

deals with supply chain-related matters.35 We run the production function models with both AI

and general-IT measurements, respectively in conditions that only consider cognitive-related jobs,

non-cognitive-related jobs, decision-making jobs, non-decision-making jobs, supply-chain-related

jobs, and non-supply-chain-related jobs. Results are presented in Table 7. The positive impacts of

AI on factor responsiveness are more significant when such AI skills are used in cognitive tasks,

with decision-making roles, and for supply-chain issues, whereas the impact of IT is roughly

indistinguishable across these conditions (if any, slightly higher in non-cognitive tasks, at non-

manager roles, and for non-supply-chain issues).

Combining the models that control for IT-related measurements and the models that sort out

as data-analytic-related if skills are required from both data-related skill clusters and from “Analysis” skill cluster; as
cloud-related if any of the required skills has the keyword “cloud computing” or cloud-computing related software.
AI-related posts are exclusive to being IT-related: if a post requires both AI-related and general IT-related skills, it is
deemed as an AI-related post.

35We refer to Hershbein and Kahn (2018) and define a job position as requiring cognitive abilities if any listed
skills include at least one of the following terms: “research,” “analy-,” “decision,” “solving,” “math,” “statistic,” or
“thinking.” We define a job with a decision-making function if its O*NET two-digit code is 11 (i.e., all types of manager-
related occupations). We define a job in charge of supply-chain-related matters by first looking up the O*NET code for
”supply chain managers” (11-3071), and then collecting the top ten related occupations provided on the official website
https://www.onetonline.org/link/summary/11-3071.04.
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Table 6: Controlling for General- and Specific-IT

"AI" = 
"IT" = General IT Robot Analytic Cloud General IT Robot Analytic Cloud

(1) (2) (3) (4) (5) (6) (7) (8)
Labor input

Log labor 0.511*** 0.506*** 0.506*** 0.505*** 0.552*** 0.542*** 0.545*** 0.532***
(0.073) (0.073) (0.073) (0.071) (0.049) (0.045) (0.048) (0.043)

Shock × log labor -0.552** -0.528** -0.572** -0.489** -0.113** -0.103** -0.101** -0.092**
(0.225) (0.206) (0.236) (0.218) (0.043) (0.041) (0.041) (0.041)

"AI" × log labor 0.027 0.023 0.026* 0.019 -0.004 -0.005 -0.004 -0.008
(0.016) (0.013) (0.014) (0.013) (0.009) (0.009) (0.009) (0.009)

Shock × "AI" × log labor 0.154* 0.144** 0.161* 0.129* 0.080*** 0.079*** 0.078*** 0.079***
(0.073) (0.062) (0.075) (0.067) (0.015) (0.015) (0.014) (0.014)

"IT" × log labor 0.04*** 0.003 0.025** 0.031 0.05*** 0.001 0.021** 0.029**
(0.012) (0.021) (0.011) (0.020) (0.011) (0.012) (0.016) (0.011)

Shock × "IT" × log labor 0.006 0.002 0.011 0.049* 0.015 0.027 0.014 -0.001
(0.023) (0.022) (0.023) (0.026) (0.011) (0.017) (0.011) (0.011)

Capital input
Log capital 0.124*** 0.124*** 0.124*** 0.124*** 0.134*** 0.136*** 0.136*** 0.137***

(0.027) (0.027) (0.027) (0.028) (0.029) (0.029) (0.029) (0.029)
Shock × log capital -0.391*** -0.394*** -0.366*** -0.410*** -0.215*** -0.212*** -0.215*** -0.214***

(0.053) (0.045) (0.047) (0.048) (0.016) (0.017) (0.017) (0.016)
"AI" × log capital -0.005 -0.004 -0.005 -0.003 0.003 0.003 0.003 0.004

(0.004) (0.004) (0.004) (0.004) (0.003) (0.003) (0.003) (0.002)
Shock × "AI" × log capital 0.086*** 0.087*** 0.075*** 0.095*** 0.113*** 0.113*** 0.113*** 0.114***

(0.019) (0.014) (0.014) (0.016) (0.020) (0.018) (0.017) (0.017)
"IT" × log capital 0.01** 0.003 0.004 -0.010 0.007** 0.002 0.002 0.007**

(0.004) (0.007) (0.005) (0.007) (0.003) (0.004) (0.005) (0.003)
Shock × "IT" × log capital 0.001 0.014** 0.019** -0.010 0.003 0.001 0.008 0.004

(0.007) (0.006) (0.007) (0.009) (0.005) (0.006) (0.006) (0.005)
Const. 1.538*** 1.538*** 1.537*** 1.541*** 1.416*** 1.416*** 1.416*** 1.423***

(0.167) (0.164) (0.166) (0.163) (0.170) (0.169) (0.170) (0.170)
!"# 51003 51003 51003 51003 38722 38722 38722 38722
!2 0.82 0.82 0.82 0.82 0.83 0.83 0.83 0.83
Control: HighTech Y Y Y Y Y Y Y Y
FE: naics2*year*quarter Y Y Y Y Y Y Y Y
FE: firm Y Y Y Y Y Y Y Y

Log value added
Raw AI intensity Instrumented AI intensity

Notes: This table reports the productivity test of AI while controlling for the intensity of IT investment. Columns (1) to (4) consider
the raw measures of AI, and columns (5) to (8) consider the instrumented measures of AI. IT variables refer to general IT-related
(columns 1,5), robotic-related (columns 2,6), data-analytic-related (columns 3,7), and cloud-computing-related (columns 4,8) job posts.
The main body of the table can be read as follows: respectively for the input factor as labor or capital, the first row shows baseline
input elasticity; the second row shows the impact of shock severity on altering the baseline elasticity; the third (fourth) row shows the
impact of AI (IT) on altering the baseline elasticity; the fifth (sixth) row shows the impact of AI (IT) on altering the relation between
shock severity and input elasticity. The firm’s investment in general high technology is controlled for and measured by the intensity
of job posts requiring at least a master’s degree. Fixed effects are at the NAICS2-by-year-by-quarter level and the firm level. Standard
errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01
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Table 7: AI/IT Skills across Positions

{Positions} = Cognitive Non-cognitive Decision-making Non-decision-making Supply chain Non-supply-chain
(1) (2) (3) (4) (5) (6)

Labor input
Log labor 0.549*** 0.563*** 0.552*** 0.558*** 0.551*** 0.561***

(0.050) (0.053) (0.050) (0.052) (0.049) (0.053)
Shock × log labor -0.089 -0.063 -0.080 -0.058 -0.082 -0.040

(0.051) (0.053) (0.055) (0.051) (0.057) (0.044)
AI-in-{positions} × log labor -0.011 0.001 -0.010 0.009 -0.008 -0.027*

(0.018) (0.009) (0.017) (0.019) (0.017) (0.013)
Shock × AI-in-{positions} × log labor 0.080*** -0.022 0.075** 0.031 0.076*** 0.060***

(0.026) (0.069) (0.032) (0.061) (0.021) (0.017)
IT-in-{positions} × log labor 0.030** 0.025** 0.020** 0.029*** 0.012 0.022**

(0.014) (0.013) (0.011) (0.009) (0.010) (0.014)
Shock × IT-in-{positions} × log labor 0.000 0.013 -0.007 0.002 -0.001 -0.044**

(0.012) (0.017) (0.012) (0.014) (0.014) (0.018)
Capital input

Log capital 0.134*** 0.129*** 0.132*** 0.131*** 0.132*** 0.131***
(0.028) (0.028) (0.029) (0.028) (0.029) (0.028)

Shock × log capital -0.193*** -0.196*** -0.194*** -0.198*** -0.193*** -0.202***
(0.014) (0.012) (0.012) (0.014) (0.012) (0.015)

AI-in-{positions} × log capital 0.005 0.001 0.003 -0.003 0.003 0.008**
(0.006) (0.004) (0.006) (0.008) (0.006) (0.003)

Shock × AI-in-{positions} × log capital 0.082*** 0.024 0.077*** 0.043 0.083*** 0.008
(0.021) (0.031) (0.023) (0.028) (0.020) (0.016)

IT-in-{positions} × log capital 0.011** 0.015*** 0.010*** 0.019*** 0.000 0.011**
(0.005) (0.005) (0.004) (0.003) (0.004) (0.006)

Shock × IT-in-{positions} × log capital -0.008 0.007 -0.005 0.007 -0.008 0.028**
(0.006) (0.007) (0.007) (0.007) (0.007) (0.010)

Const. 1.429*** 1.433*** 1.432*** 1.428*** 1.433*** 1.427***
(0.171) (0.167) (0.168) (0.172) (0.171) (0.166)

!"# 51003 51003 51003 51003 51003 51003
!2 0.82 0.82 0.82 0.82 0.82 0.82
Control: HighTech Y Y Y Y Y Y
FE: naics2*year*quarter Y Y Y Y Y Y
FE: firm Y Y Y Y Y Y

Log value added

Notes: This table reports the productivity test of AI and IT measured with relevant job posts from different positions: cognitive
or non-cognitive (columns 1,2), decision-making or non-decision-making (columns 3,4), supply-chain-related or non-supply-chain-
related (columns 5,6). The main body of the table can be read as follows: respectively for the input factor as labor or capital, the
first row shows baseline input elasticity; the second row shows the impact of shock severity on altering the baseline elasticity; the
third (fourth) row shows the impact of AI (IT) on altering the baseline elasticity; the fifth (sixth) row shows the impact of AI (IT) on
altering the relation between shock severity and input elasticity. The firm’s investment in general high technology is controlled for
and measured by the intensity of job posts requiring at least a master’s degree. Fixed effects are at the NAICS2-by-year-by-quarter
level and the firm level. Standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01
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granular scenarios, we confirm that AI, beyond general IT, has systematic and specific impact on

the documented higher factor elasticity during shocks.

6 Heterogeneity Tests

In Table 5, we reveal an interesting dynamic between different production factors: the uncertainty

disruption and the AI mitigation divert from influencing labor elasticity to influencing capital

elasticity after controlling for firm fixed effects. This implies that the outcome responsiveness to

capital varies mainly inter-temporally within the firm, while that to labor varies mostly at the cross-

section level. Motivated by the hint of cross-sectional heterogeneity, we resolve to examine the

firm characteristics that drive the above-mentioned findings with a series of sub-sample studies.

To keep consistent with the definition of the section (i.e., the fixed effects at NAICS2-by-year-by-

quarter level), we categorize observations into two sub-samples based on the median value of

concerning variables within each NAICS2-by-year-by-quarter cell. Then, we run the specification

of Column (6) of Table 5 respectively for the two sub-samples.36

We characterize firms from multiple aspects, including financial leverage (measured by the

ratio of liabilities to assets), financial flexibility (measured by the ratio of cash holdings to assets),

operating flexibility (measured by the ratio of working capital to operating expense), supporting

expenses (measured by the ratio of selling, general, and administrative expense to revenue), and

inventory turnover (measured by the ratio of cost of goods sold to average inventory). To alleviate

the concern of reverse causality, we consider the variable at a one-quarter lagged period. Table

8 presents the results. The responsiveness of production outcome to labor input varies greatly

among different samples: the uncertainty shock is more disruptive and the AI is more defensive

for firms with smaller leverage, lower flexibility financially and operationally, less supporting

expense, and poorer inventory turnover. In contrast, the responsiveness of production outcome

to capital input stays consistent throughout samples, corroborating the results in Table 5 that the

variation on capital elasticity resides mainly inter-temporally within the firm.

The heterogeneous results imply some potential of AI in helping underperforming and con-

strained firms to catch up with high-performers or even to gain a competitive advantage in the

production process. However, the coefficient estimates are independent of the units used to mea-

sure the inputs and outputs, thus they cannot be easily compared across different samples that

have different average levels of factor input shares. In other words, after considering actual inputs

36We maintain the fixed effects at the firm level to remove unobserved firm heterogeneity. Compared to the one-
sample analysis, the split-sample analysis allows the firm fixed effects to vary when the same firm is divided into
different types based on changing dynamics within firms and within cells.
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Table 8: Heterogeneity across major firm characteristics

Lower Higer Lower Higer Lower Higer Lower Higer Lower Higer
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Coefficients
Log labor 0.595*** 0.391*** 0.430*** 0.688*** 0.407*** 0.510*** 0.420*** 0.602*** 0.602*** 0.437***

Shock × log labor -0.998** -0.319 -0.604*** -0.490 -0.585*** -0.279 -0.529*** -0.210 -0.656** -0.546
Fitted AI × log labor 0.014 0.036* 0.030* 0.019 0.023 0.064* 0.034** 0.026* 0.024 0.031**

Shock × Fitted AI × log labor 0.297** 0.072 0.172*** 0.119 0.165** 0.031 0.148** 0.024 0.178* 0.151
Log capital 0.116*** 0.126*** 0.094*** 0.184** 0.077*** 0.292** 0.117*** 0.149*** 0.137*** 0.112***

Shock × log capital -0.285** -0.443*** -0.387*** -0.389*** -0.408*** -0.443*** -0.399*** -0.423*** -0.397*** -0.367**
Fitted AI × log capital 0.000 -0.008 -0.005 -0.003 -0.002 -0.013 -0.007 -0.005 -0.005 -0.005

Shock × Fitted AI × log capital 0.050 0.108*** 0.087*** 0.089*** 0.094*** 0.113** 0.090*** 0.104*** 0.090*** 0.081
Elasticity

!("#$%&) 0.597 0.448 0.470 0.704 0.430 0.614 0.469 0.636 0.623 0.479
!('#()*#") 0.096 0.077 0.052 0.159 0.042 0.245 0.068 0.117 0.098 0.387

Marginal product
+,("#$%&) 29.380 14.068 18.083 26.951 13.745 21.418 15.866 22.404 19.204 20.828
!"(capital) 0.034 0.029 0.024 0.044 0.021 0.054 0.026 0.035 0.027 0.029

SGA exp. / Revenue Inventory turnover
Sample

Liabilities / Assets Cash / Assets Working cap. / Operating exp.

Notes: This table presents heterogeneity tests of AI productivity under shocks across major firm characteristics: lower or higher
liability-to-asset ratio (columns 1, 2), lower or higher cash-to-asset ratio (columns 3, 4), lower or higher working capital-to-operating
expense ratio (columns 5, 6), lower or higher expenses-to-revenue ratio (columns 7, 8), and lower or higher inventory turnover ratio
(columns 9, 10). In the section of Coefficients, numbers refer to the estimates of parameter coefficients from sub-sample analyses, and
stars denote the significance level: * p < 0.1, ** p < 0.05, *** p < 0.01. In the section of Elasticity and Marginal product, numbers refer to
the calculated values of output elasticity with Expression 6 and marginal product with Expression 12 in each sub-sample.

in firm productions, the realized productivity gain could differ from the aforementioned latent ben-

efit. Hence, in addition to reporting coefficients, we also report output elasticity calculated with

Expression 6, and follow Brynjolfsson and Hitt (1996) and Tambe and Hitt (2012b) to compute

the marginal product (MP), the increase in value-added associated with one additional unit of

production factor (i.e., one thousand dollar working capital or one human labor). The calculation

is equal to the output elasticity of factor input multiplied by the ratio of output to that factor input

(with an example of capital input K):

MPK =
∂VA
∂K
=
∂VA
∂K

K
VA

VA
K
= α

VA
K

(12)

where, following Dhyne et al. (2020), we calculate the factor input share for each observation and

take the mean of the resulting distribution after winsorizing at the 1% level to avoid biases from

outliers. In Table 8, we present the elasticity and marginal product computed with firm actual

input shares. The comparison suggests that under-performing and constrained firms which could

potentially benefit more from AI investment in aggregate do not generate higher production gain

per unit of input. Among many conjectures, one key explanation could be the under-investment

in focal AI or complementary infrastructure, rendering a lower rate of accruing marginal return

from production inputs.

Motivated by the conjecture, we further explore firm characteristics that depict the level of

complementary investments. Previous literature finds that benefits from advanced technologies

such as AI are accentuated for firms with a larger portion of general-IT skills, higher level of
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Table 9: Heterogeneity across levels of complementary investment

Lower Higer Lower Higer Technical Managerial
(1) (2) (3) (4) (5) (6)

Coefficients
Log labor 0.725*** 0.601** 0.616*** 0.244* 0.585** 0.983***

Shock × log labor -1.175*** -0.460 -0.487** -0.375 -1.926** -1.295
Fitted AI × log labor -0.048 -0.050 -0.024 0.103** 0.077 -0.097

Shock × Fitted AI × log labor 0.357*** 0.136 0.146** 0.069 0.536** 0.317
Log capital 0.012 0.033 0.055 0.138*** 0.244** 0.135**

Shock × log capital -0.194 -0.447** -0.389*** -0.462*** 0.199 -0.019
Fitted AI × log capital 0.002 0.012 0.006 -0.014 -0.010 0.089**

Shock × Fitted AI × log capital 0.016 0.103* 0.081*** 0.120*** -0.062 0.003
Elasticity

!("#$%&) 0.434 0.525 0.457 0.525 0.429 0.605
!('#()*#") 0.009 0.042 0.081 0.019 0.025 0.065

Marginal product
+,("#$%&) 13.471 13.869 14.430 17.393 12.788 24.893
!"(capital) 0.002 0.021 0.005 0.028 0.013 0.044

AI positions
Sample

IT / Non-IT posts Educated workers

Notes: This table presents heterogeneity tests of AI productivity under shocks across major firm characteristics: lower or higher ratio
of IT-related job posts (columns 1, 2), lower or higher ratio of education-demanding job posts (columns 3, 4), and AI-posts concentrated
more in technical-knowledge-demanding positions or managerial-knowledge-demanding positions (columns 5, 6). In the section of
Coefficients, numbers refer to the estimates of parameter coefficients from sub-sample analyses, and the stars denote the significance
level: * p < 0.1, ** p < 0.05, *** p < 0.01. In the section of Elasticity and Marginal product, numbers refer to the calculated values of output
elasticity with Expression 6 and marginal product with Expression 12 in each sub-sample.

educated workers, and more skill-aligned management teams (Tambe 2014, Brynjolfsson and

McElheran 2016, Rock 2019). In our analyses, we measure the three aspects respectively with

the ratio of IT-related job posts accrued over the past three years,37 the average requirement on

educational background for job posts over the past three years, and the ratio of number of AI-

posts in technical-knowledge-demanding positions to that in managerial-knowledge-demanding

positions.38 Then, we calculate the median value within the NAICS2-by-year-by-quarter cell and

run sub-sample regressions accordingly. Table 9 presents the results. Echoing the results from

Table 8, firms currently with lower levels of complementary investment tend to have potentially

greater benefits from AI investment, all else being equal. However, after considering the practical

input share of capital and labor chosen by firms, the calculated elasticity and marginal product are

consistently lower than firms with stronger complements.

Overall, the evidence on heterogeneous effects suggests that there is a great potential for lever-

aging AI to achieve enhanced performance in turbulent contexts, especially for currently under-

performing firms or firms with larger constraints. In practice, however, the under-investment in

complementary infrastructure seems to render the realized benefits lower than expected.

37We use the same way of identifying general-IT-related job posts as that from Table 6. Combining results from Table
6 and Table 9 implies that, although general-IT itself appears to be less capable of mitigating disruptions, it provides a
supportive role for AI to better unleash the potential.

38We observe the level of knowledge-demand by referring to the importance and prevalence of management-relevant
or technique-relevant knowledge as identified by O*NET. If a job requires more management-relevant knowledge than
technique-relevant knowledge, it is regarded as a managerial-knowledge-demanding position.
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7 Conclusion and Implications

The primary objective of this paper is to conduct an empirical investigation to evaluate whether and

how investment in AI can improve firms’ performance when faced with uncertainty shocks. After

controlling for various company characteristics and risk factors and using a comprehensive dataset

on online job vacancy postings, we find that corporate AI investments can generate considerable

resilience as reflected by the mitigated stock value loss caused by disruptive uncertainty. Such

mitigated loss in the stock market can be explained by the improved production as identified from

an adapted Cobb-Douglas function: investment and accumulation of AI relieve the disturbed

elasticity of firm outputs to production inputs among conditions of abnormality. The proposed

mechanism of AI empowering resilience is further confirmed with an instrumental variable and

an array of robustness tests that control for IT-related investment and explore various potential

channels.In addition, the split-sample heterogeneity tests suggest greater potential for employing

AI among under-performing firms. However, the actual realized gain being smaller among these

firms implies a pressing need for complementary investments and management designs. Overall,

our paper identifies an important aspect of AI effectiveness - by increasing labor productivity and

capital responsiveness, AI furnishes resilience for firms during rough times.

We acknowledge a major limitation in this paper that the exact practice underlying firm

productions is not well discussed. Due to the complexity and variability of production processes

across firms and the lack of detailed measurements and datasets, exploration on this end is beyond

the scope of our current study. A related caveat is that we do not provide a thorough understanding

of all of our results, such as the nuanced differential impact on labor versus capital or whether the

impact is specific within firms or general across industries. Qualitative interviews and surveys

would help with a further understanding of granular mechanisms. We hope that these findings

spark interest in researchers and practitioners to explore in future efforts. Rather than digging

deeper into the precise functioning, our goal in this paper is to take an aggregate perspective on

the common usage of AI, studying the value and the cost, thus achieving the goal of weighing

allocative efficiency. With our broader coverage of firms, solid measures of key variables and

instruments, and robust empirical analyses from the firm-date panel and firm-quarter panel, we

establish the causal facts and shed light on future research regarding AI effectiveness.

Our research contributes to both academia and industry. It not only enhances our under-

standing of corporate AI investments as IS researchers but also provides new insights regarding

corporate resilience by offering practical managerial guidance on what kind of firms should rely on

AI more during shocks. Although natural disasters are difficult to predict, our evidence indicates
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that if AI is invested in the right setting and used to perform the correct functions, a firm can

mitigate the adverse impacts that the disasters bring. Furthermore, the investment in AI should

be made by those who can make the most out of the technology, at least at uncertain times. For

example, though previous literature found firms with higher liquidity or more cash holdings in-

vest in AI more (Babina et al. 2024, Alekseeva et al. 2021), our results show AI investments have

a larger positive effect on income performance under disasters for firms with stronger financial

constraints. It suggests that those financially constrained firms should seriously consider AI in-

vestments, especially in today’s uncertain environment. This makes smart manufacturing and

Industry 4.0 technologies more important than ever before.

During the past few years, the pandemic has negatively struck many companies, and corporate

resilience has never been as important as it is now. As such, the evolution of AI competence can be

thought of as a type of insurance policy that helps companies brace for uncertainty and turbulence.

If crisis is the new norm, infusing AI into firm productions is no longer a luxury - it’s a necessity.

With forewarnings about critical events, AI can help create a semblance of stability and, at the

same time, improve efficiencies to get the most out of installed capital investments. As a recent

example, AI has already been deployed to assess food supply disruption caused by COVID-19 in

real time.39 Our results indicate that an enhanced benefit of AI investments is that they function

like insurance premiums, a new notion that goes beyond the traditional understanding of AI’s

productivity and performance.
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Appendix

A Sample Comparison

We present here the characteristics of all firms from Compustat before our process of merging with

other datasets and filtering with missing variables. Compared to the universe of public firms in

Compustat (with NAICS2 < 50), our in-analysis sample covers firms that are slightly larger in size

and better in performance, while similar in financial ratios and aggregate standard deviations.

Table A1: Summary statistics of Compustat firms

Min P25 P50 P75 Max Std. Dev.
Asset 0.00 19.54 139.23 1223.29 440707.20 18038.05
Cash -0.99 1.93 16.61 82.60 27700.55 1187.59
Sales -200.11 0.23 17.45 217.42 121759.40 3877.02
Cost of goods sold -87.13 0.68 12.68 140.18 94866.58 3131.20
R&D expense -0.01 0.19 2.63 12.31 7343.56 255.20
# employees 0.00 0.03 0.29 2.83 2222.22 40.73
Working capital -40421.78 -0.10 17.38 129.35 42480.80 1582.83
Revenue-to-asset -5417.78 -0.45 -0.06 0.02 294.03 85.38
Book-to-market -1.45 0.47 1.02 2.13 435341.80 6787.37
Debt-to-asset 0.00 0.08 0.21 0.37 967.87 15.72

Characteristics of Compustat firms (N=7889)

Notes: The industry distribution categorized by NAICS2 code is: 11 (0.61%), 21 (24.67%), 22 (4.49%), 23 (1.89%), 31-33 (55.39%), 42
(3.71%), 44-45 (5.02%), 48-49 (4.21%).
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B List of AI Skills

Table A2: AI Skills

List of AI Skills

1 AI KIBIT 36 Mlpy
2 ANTLR 37 Modular Audio Recognition Framework
3 Apertium 38 Moses
4 Artificial Intelligence 39 Mxnet
5 Automatic Speech Recognition(ASR) 40 Natural Language Processing
6 Caffe Deep Learning Framework 41 Natural Language Toolkit
7 Chatbot 42 ND4J
8 Computational Linguistics 43 Nearest Neighbor Algorithm
9 Computer Vision 44 Neural Networks
10 Decision Trees 45 Object Recognition
11 Deep Learning 46 Object Tracking
12 Deep Learning4j 47 OpenCV
13 Distinguo 48 OpenNLP
14 Google Cloud Machine Learning Platform 49 Pattern Recognition
15 Gradient Boosting 50 Pybrain
16 H2O 51 Random Forests
17 IBM Watson 52 Recommender Systems
18 Image Processing 53 Semantic Driven Subtractive Clustering Method
19 Image Recognition 54 Semi-Supervised Learning
20 IPSoft Amelia 55 Sentiment Analysis / Opinion Mining
21 Ithink 56 Sentiment Classification
22 Keras 57 Speech Recognition
23 Latent Dirichlet Allocation 58 Supervised Learning
24 Latent Semantic Analysis 59 Support Vector Machine
25 Lexalytics 60 TensorFlow
26 Lexical Acquisition 61 Text Mining
27 Lexical Semantics 62 Text To Speech
28 Libsvm 63 Tokenization
29 Machine Learning 64 Torch
30 Machine Translation (MT) 65 Unsupervised Learning
31 Machine Vision 66 Virtual Agents
32 Madlib 67 Vowpal
33 Mahout 68 Wabbit
34 Microsoft Cognitive Toolkit 69 Word2Vec
35 Mlpack 70 Xgboost
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C Correlation Tests between Uncertainty Shocks and Key Constructs

We check the correlations between uncertainty shock and key constructs, including AI intensity,

Master-degree intensity, and value-added at the firm-by-year-by-quarter level in Table A3. This

model-free description shows no systematic relation between uncertainty shock and other post-

based intensity measures, suggesting the non-existence of collinearity issue, but a significantly

negative relation with value-added, suggesting the validity of this uncertainty shock capturing

firm-specific impacts from various disasters.

Table A3: Model-free statistics per uncertainty shock bin

Uncertainty shock decile Uncertainty shock AI intensity (%) Master intensity (%) Value-added ('000 US$)
0~10% 0.01 0.93 2.30 971.93
10~20% 0.02 0.76 1.91 636.70
20~30% 0.04 0.69 1.65 571.57
30~40% 0.07 0.59 1.47 578.16
40~50% 0.11 0.57 1.44 562.56
50~60% 0.17 0.51 1.43 397.66
60~70% 0.27 0.57 1.52 436.04
70~80% 0.40 0.67 2.05 466.29
80~90% 0.54 0.72 2.33 391.11

90~100% 0.70 0.56 2.11 293.22
Notes: We rank uncertainty shocks from the firm-by-year-by-quarter panel into ten bins, and present the corresponding average value

of the uncertainty shock, AI intensity, Master intensity, and value-added of firm outputs.
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D Time Series Trends of IT-related Demands

In this section, we present the time-series demands of AI and several IT-related skills that are

arguably also creating resilience. To increase the relevance of our concerning samples, we only

depict firms that have ever posted AI-related skills. We construct IT-related intensity by referring

to that of AI-related intensity, i.e., the share of job posts that require IT-related skills among a total

number of all job posts. Following Babina et al. (2024), we include and measure four non-exclusive

IT-related job posts: a general IT-related job defined as a job in which at least 10% of the required

skills are in the “Information Technology” skill cluster; a robot-related job defined as a job that

requires any skills containing the keyword “Robotics”; a data-analytic-related job defined as a job

that requires skills from both data-related skill clusters and the “Analysis” skill cluster; a cloud-

related job defined as a job that requires any skills containing the keyword “cloud computing”

or cloud-computing related software. We plot the time-series changes of each intensity measure

compared to AI-intensity in Figure A1. Despite a few divergences at some time points, the overall

correlation between AI and IT adoption is notable.

Figure A1: Time-series trend of firms demanding AI and IT

(%
)

(%
)

Notes: The figure presents time-series changes of AI intensity and four other intensity measures: general IT-related jobs, cloud-
computing-related jobs, data-analytic-related jobs, and robotic-related jobs.
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E The NETS Dataset

As a robustness check for our variable construct, we use the NETS dataset to measure the geo-

graphical distribution of firm operations and calculate the extent of firm exposure to each disaster

event. NETS (the National Establishment Time-Series) is a time-series database of establishment

information. We use the release of the 2021 NETS Database, which includes thirty-two annual

snapshots (taken every January) of the full Duns Marketing Information (DMI) file that follows

over 82.4 million establishments between January 1990 and January 2021. The time-series variables

include the total number of employees and the estimated annual sales at the establishment level.

Thus, we consider these two variables as indicators of the level of economic activity across facilities

from different counties. To reduce reverse causality, we use the records from lagged one or two

year(s) as the measure of exposure in the present year. Table A4 presents the time-series changes

in the distribution of employee counts and estimated sales at the firm level.

Table A4: Time-series summary statistics from the NETS dataset

Year Min P25 P50 P75 Max Std. Dev.

2010 0 23 353 3181.5 350702 20944.34
2011 0 30 385 3235.5 351463 21786.39
2012 0 34.5 413.5 3262.5 353251 22711.57
2013 0 35 432.5 3374 362350 23086.57
2014 0 33 421.5 3308 372673 22637.27
2015 0 37 432 3347.5 394592 23068.28
2016 0 42 468.5 3268.5 414217 23180.7
2017 0 44 505.5 3213 419576 22691.24
2018 0 44 487.5 3034.5 429361 21343.95
2019 0 46 500.5 3083.5 430862 21161.85

2010 0 3009892 1.120E+08 1.020E+09 3.360E+11 1.200E+10
2011 0 4588750 1.140E+08 9.770E+08 4.480E+11 1.370E+10
2012 0 5007041 1.210E+08 9.900E+08 5.590E+11 1.590E+10
2013 0 5308888 1.290E+08 1.080E+09 6.700E+11 1.990E+10
2014 0 5037462 1.210E+08 1.020E+09 6.420E+11 1.860E+10
2015 0 5657406 1.250E+08 1.000E+09 6.130E+11 1.840E+10
2016 0 6321709 1.320E+08 9.990E+08 3.610E+11 1.220E+10
2017 0 6828103 1.280E+08 9.440E+08 2.220E+11 9.420E+09
2018 0 6998873 1.240E+08 8.410E+08 1.660E+11 7.960E+09
2019 0 8076352 1.360E+08 9.000E+08 2.590E+11 9.230E+09

Sales

# Employees
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F Different Constructs in a Pooled Event-Study

We show in Table A5 the robustness tests with different considerations on event window length

(i.e., the considered number of days before and after disasters) (Columns 1-4), on rolling periods

over which the firm’s geographic exposure (Columns 5-8) and the firm’s AI intensity (Columns

9-12) are calculated. Our results largely persist.

Table A5: Different constructs in pooled event-study

3 5 9 14 3 6 18 24 3 6 18 24
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Before-disaster window
!(t=0) -0.065 -0.136 -0.091 -0.162 -0.207 -0.206 -0.203 -0.204 0.518 0.087 0.146 0.178

(0.645) (0.653) (0.644) (0.624) (0.628) (0.628) (0.628) (0.628) (0.757) (0.724) (0.636) (0.681)
!(t=0) × Shock -0.034 -0.010 -0.006 0.090 0.041 0.018 0.018 0.025 0.020 0.027 0.079 0.056

(0.122) (0.084) (0.067) (0.056) (0.078) (0.074) (0.073) (0.074) (0.071) (0.072) (0.074) (0.077)
!(t=0) × AI 0.004 0.012 0.011 0.014* 0.012 0.012 0.012 0.012 0.007 0.002 0.015 0.019*

(0.011) (0.010) (0.008) (0.008) (0.009) (0.009) (0.009) (0.009) (0.006) (0.006) (0.009) (0.010)
!(t=0) × Shock × AI -0.005 -0.043 -0.023 -0.009 -0.040 -0.038 -0.042 -0.044 -0.033 -0.033 -0.046 -0.038

(0.053) (0.040) (0.029) (0.020) (0.036) (0.035) (0.034) (0.034) (0.027) (0.026) (0.043) (0.056)
During-disaster window

!(t=1) -0.068 -0.003 0.024 0.022 0.005 0.003 0.005 0.005 0.025 0.020 0.016 0.035
-0.655 (0.036) (0.034) (0.031) (0.035) (0.035) (0.035) (0.035) (0.036) (0.035) (0.034) (0.033)

!(t=1) × Shock -0.506*** -0.524*** -0.552*** -0.333*** -0.598*** -0.540*** -0.535*** -0.533*** -0.554*** -0.557*** -0.596*** -0.574***
(0.180) (0.143) (0.120) (0.108) (0.135) (0.129) (0.123) (0.121) (0.129) (0.128) (0.133) (0.137)

!(t=1) × AI 0.014 0.006 0.006 0.003 0.008 0.007 0.006 0.006 -0.012 -0.007 0.004 0.007
(0.010) (0.009) (0.008) (0.007) (0.008) (0.008) (0.008) (0.008) (0.009) (0.008) (0.008) (0.009)

!(t=1) × Shock × AI 0.204** 0.242*** 0.220*** 0.037 0.227*** 0.229*** 0.238*** 0.239*** 0.195*** 0.218*** 0.208** 0.203**
(0.082) (0.077) (0.066) (0.056) (0.068) (0.068) (0.070) (0.070) (0.058) (0.066) (0.090) (0.097)

After-disaster window
!(t=2) -0.174 -0.027 0.008 -0.003 -0.014 -0.014 -0.014 -0.014 0.001 -0.001 -0.016 -0.017

-0.231 (0.039) (0.028) (0.022) (0.033) (0.033) (0.033) (0.033) (0.033) (0.033) (0.033) (0.035)
!(t=2) × Shock -0.054** -0.171** -0.308*** -0.164** -0.301*** -0.277*** -0.263*** -0.264*** -0.241*** -0.276*** -0.233*** -0.217**

(0.250) (0.854) (0.090) (0.065) (0.099) (0.098) (0.096) (0.096) (0.092) (0.094) (0.089) (0.095)
!(t=2) × AI 0.004 -0.002 0.001 0.001 -0.002 -0.002 -0.002 -0.002 -0.011 -0.010 -0.001 0.000

(0.011) (0.008) (0.005) (0.004) (0.006) (0.006) (0.006) (0.006) (0.007) (0.006) (0.007) (0.008)
!(t=2) × Shock × AI 0.059 0.132** 0.131*** 0.019 0.135*** 0.122** 0.127*** 0.126*** 0.051 0.088** 0.120** 0.111*

(0.084) (0.065) (0.040) (0.031) (0.050) (0.048) (0.047) (0.047) (0.038) (0.037) (0.056) (0.058)
!"# 414399 417887 417900 417910 417897 417897 417897 417897 353630 384682 387672 366230
!2 0.29 0.38 0.44 0.47 0.42 0.42 0.42 0.42 0.44 0.43 0.43 0.43
Control: HighTech Y Y Y Y Y Y Y Y Y Y Y Y
Control: Time-varying basics Y Y Y Y Y Y Y Y Y Y Y Y
FE: Firm + Disaster Y Y Y Y Y Y Y Y Y Y Y Y

Robustness
Firm exposure rolling period (months)Event window length (days) AI intensity rolling period (months)

Return

Notes: The table shows results from the pooled event study testing the evidence of AI resilience. The dependent variable is stock
return. Different considerations include varying the event window length (i.e., the considered number of days before and after
disasters) (Columns 1-4), the rolling periods over which the firm’s geographic exposure (Columns 5-8) and the firm’s AI intensity
(Columns 9-12) are calculated. Standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01
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G Structure-Free Regressions with Firm-Year-Quarter Panel

In this section, we present a set of structure-free regressions with the firm-year-quarter panel. We

consider various outcome measurements, including log-transformed sales, log-transformed cost

of goods sold, gross margin (sales minus cost of goods sold, divided by sales), log-transformed

expenses, log-transformed income (sales minus costs of goods sold and expenses), inventory

turnover (cost of goods sold divided by the average inventory between year-start and year-end),

and asset turnover (sales divided by the average total assets between year-start and year-end). We

regress each outcome variable on the level of shock severity, AI intensity, and other independent

variables that are argued to be relevant from previous literature.

We find some baseline negative impact of disaster shocks, though not statistically significant,

as reflected by lower sales, higher expenses, and lower income. With regard to our variable

of interest, AI, we find some positive effect on sales and gross margin, meanwhile some negative

effects on total income. Considering the low significance and weak consistency, we cannot conclude

any effects from AI for explaining the level of inputs (i.e., the amount of costs of goods sold, the

amount of expenses) and the level of outputs (i.e., the amount of sales, the gross margin, and the

total income). This echos previous literature on the complex nature of AI productivity, that the

potential benefits on sales and potential downsides on cost and expenses might offset each other,

with the ultimate impact undetermined.

However, we find some notable and interesting impact from AI for mitigating the weakened

inventory turnover and asset turnover during shock periods. Therefore, we are motivated to

take a structural approach, i.e., production function, as our main research framework to formally

investigate our speculation that AI mitigates uncertainty through adjusting the efficiency and

responsiveness of input usage.
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Table A6: Structure-free regressions with firm-year-quarter panel

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13) (14)
Shock -0.004 -0.011 -0.006 -0.027 0.003 0.009 0.006 0.012 -0.003 -0.095 -0.009 -1.235*** -0.010*** -0.033***

(0.005) (0.028) (0.006) (0.028) (0.002) (0.014) (0.004) (0.018) (0.023) (0.115) (0.053) (0.376) (0.002) (0.013)
AI 0.002** -0.001 -0.000 0.000 0.005 0.082*** 0.000

(0.001) (0.001) (0.000) (0.001) (0.005) (0.019) (0.000)
Shock × AI -0.001 -0.000 -0.002 -0.000 0.001 -0.018 0.001

(0.001) (0.002) (0.001) (0.001) (0.009) (0.033) (0.001)
Fitted AI 0.003 0.002 0.003* 0.002 -0.037** -0.063* -0.003*

(0.002) (0.002) (0.002) (0.002) (0.018) (0.035) (0.001)
Shock × Fitted AI 0.002 0.008 -0.003 -0.004 0.031 0.467*** 0.008*

(0.011) (0.010) (0.005) (0.006) (0.043) (0.142) (0.005)
Lag return-to-asset -0.028* 0.009 -0.002 0.015 0.043** 0.023** 0.017 0.020** 0.439** 0.238** -0.258 -0.490*** 0.014 0.037***

(0.017) (0.014) (0.023) (0.012) (0.020) (0.012) (0.011) (0.008) (0.200) (0.103) (0.287) (0.179) (0.009) (0.004)
Lag log asset 0.083*** 0.084*** 0.060*** 0.062*** 0.005 0.001 0.023*** 0.024*** -0.114* -0.069 -0.550*** -0.544*** -0.240*** -0.218***

(0.005) (0.005) (0.005) (0.005) (0.003) (0.003) (0.003) (0.003) (0.064) (0.066) (0.120) (0.098) (0.009) (0.008)
Lag asset-to-debt 0.004*** 0.003** 0.003* 0.002 -0.000 -0.001 0.001 -0.001 0.034*** 0.045*** -0.061*** -0.041*** 0.003*** 0.002***

(0.001) (0.001) (0.001) (0.001) (0.000) (0.001) (0.001) (0.001) (0.008) (0.009) (0.013) (0.010) (0.001) (0.000)
Lag log employee 0.009** 0.013*** 0.028*** 0.031*** 0.005*** 0.008*** 0.018*** 0.018*** 0.289*** 0.233*** -0.379*** -0.333*** -0.026*** -0.016***

(0.004) (0.003) (0.005) (0.004) (0.001) (0.002) (0.003) (0.004) (0.073) (0.074) (0.074) (0.076) (0.002) (0.002)
Lag book-to-market -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 -0.000 0.015* 0.014* -0.000 -0.001 0.000*** 0.000***

(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.008) (0.008) (0.000) (0.000) (0.000) (0.000)
Lag R&D-sales -0.450*** -0.282*** -0.091 -0.055* -0.009 -0.015 0.091*** 0.047*** -7.356*** -1.536** 0.150 0.343 -0.023* -0.008

(0.044) (0.025) (0.056) (0.028) (0.025) (0.019) (0.016) (0.009) (0.959) (0.661) (0.702) (0.364) (0.013) (0.006)
Lag log sales 0.690*** 0.707*** -0.097*** -0.079*** 0.216*** 0.245*** 0.053*** 0.048*** 1.427*** 1.148*** -0.328 -0.049 0.129*** 0.121***

(0.019) (0.018) (0.022) (0.016) (0.017) (0.018) (0.010) (0.008) (0.172) (0.163) (0.368) (0.213) (0.009) (0.007)
Lag log cogs -0.057*** -0.021** 0.912*** 0.925*** -0.154*** -0.188*** -0.018*** -0.025*** -0.687*** -0.612*** 0.239* 0.241** -0.052*** -0.046***

(0.010) (0.008) (0.014) (0.012) (0.007) (0.008) (0.005) (0.005) (0.133) (0.156) (0.123) (0.107) (0.005) (0.005)
Lag log cash -0.000 -0.003* -0.007*** -0.008*** 0.002** 0.001 0.002 0.005*** 0.017 0.007 0.330*** 0.348*** -0.002* -0.004***

(0.002) (0.002) (0.003) (0.002) (0.001) (0.001) (0.001) (0.001) (0.018) (0.019) (0.036) (0.036) (0.001) (0.001)
Lag log operating expense 0.287*** 0.227*** 0.140*** 0.104*** -0.158*** -0.136*** -0.044*** -0.031** -0.136 0.193 1.187*** 0.841*** 0.220*** 0.196***

(0.021) (0.019) (0.024) (0.017) (0.011) (0.014) (0.011) (0.012) (0.260) (0.268) (0.292) (0.147) (0.012) (0.013)
Lag log general expense -0.006 0.002 -0.034*** -0.032*** 0.087*** 0.075*** 0.959*** 0.955*** -0.058 -0.244*** -0.595*** -0.605*** -0.027*** -0.031***

(0.006) (0.005) (0.008) (0.008) (0.002) (0.003) (0.006) (0.006) (0.094) (0.091) (0.084) (0.078) (0.003) (0.004)
Const. -0.092*** -0.085*** -0.069*** -0.064*** 0.346*** 0.310*** 0.008 0.003 0.097 -0.225 1.175*** 1.477*** 0.475*** 0.485***

(0.015) (0.014) (0.018) (0.014) (0.007) (0.007) (0.011) (0.010) (0.406) (0.353) (0.191) (0.152) (0.010) (0.007)
!"# 38722 38722 38722 38722 38722 38722 38722 38722 38722 38722 38722 38722 38722 38722
!2 0.99 0.99 0.99 0.99 0.77 0.58 0.99 0.99 0.88 0.89 0.12 0.09 0.77 0.75
FE: naics2*year*quarter Y Y Y Y Y Y Y Y Y Y Y Y Y Y
FE: firm Y Y Y Y Y Y Y Y Y Y Y Y Y Y

Asset turnoverLog sales Log costs of goods sold Gross margin Log expense Inventory turnoverLog income

Notes: The table shows structure-free regression with the firm-by-year-by-quarter panel. Dependent variables include log-transformed
sales (columns 1,2), log-transformed cost of goods sold (columns 3,4), gross margin (sales minus cost of goods sold, divided by sales)
(columns 5,6), log-transformed expenses (columns 7,8), log-transformed income (sales minus costs of goods sold and expenses)
(columns 9,10), inventory turnover (cost of goods sold divided by the average inventory between year-start and year-end) (columns
11,12), and asset turnover (sales divided by the average total assets between year-start and year-end) (columns 13,14). Odd columns
consider the raw measure of AI intensity, and even columns consider the instrumented AI intensity. Standard errors in parentheses. *
p < 0.1, ** p < 0.05, *** p < 0.01
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H Stock-Type AI Using the Perpetual Inventory Method

Using the flow-type AI-share (i.e., only considering the AI-related skills in the past rolling period)

as a proxy for AI demand and adoption for each firm across time points is a widely adopted

practice in this literature (Felten et al. 2021, Acemoglu et al. 2022, Babina et al. 2024). Nevertheless,

there remains a concern regarding the potential discrepancy between flow-type and stock-type

(i.e., considering AI-related skills ever demanded during the whole period). We address this

concern with a simulation test and a sensitivity check.

We first conduct a simulation test to compare our flow-type AI measure and the stock-type

AI measure. Note that AI-related skills and general other skills can either depreciate or appreciate

over time; hence, we try various combinations of depreciation/appreciation factors. We focus on

firms that have ever posted AI-related jobs during our sample period to increase the variation in AI

measurement. The flow-type AI is calculated using Equation 1, and the stock-type AI is calculated

by following the perpetual inventory method:

AI Stocki,τ =

∑τ
t=0 a[ τ−t

12 ]#AI Postτ∑τ
t=0 b[ τ−t

12 ]#Total Postτ
(13)

where τ indicates the current month, and a and b respectively indicate the depreciation (or ap-

preciation) factors for AI-related posts and all posts. We impose depreciation (or appreciation)

over years, instead of over months, by using the floor division [τ−t
12 ]A.1. We tried seven choices of

a (i.e., a = 0.7,0.8,0.9,1.0,1.1,1.2,1.3) and three choices of b (i.e., b = 0.9,1.0,1.1). Figure A2 shows

the simulation results. Each sub-graph corresponds to a different value of b. The horizontal axis

marks the time series. Lines mark different values of a. We have two major observations.

First, our flow-type AI measure fluctuates on a rising trend. The fluctuation reflects largely

secular patterns in the aggregate demand towards AI. This systematic variation is not likely to

explain the variation in our outcome variables, since we include fixed effects at industry-by-year-

by-quarter level (or even more granular in the stock return analyses, as we included fixed effects

at disaster level that is usually within one month).

Second, as the rolling period becomes longer (i.e., approaching the most recent years), our

flow-type AI measure approximates the line where a > b, implying that it actually aligns with

the scenario where AI-related skills from earlier days appreciate throughout the past decade as

compared to general other skills. This finding hints at the fact that it is not discounting (or

appreciating) AI skill itself, but the comparative speed of discounting (or appreciating) relative to

A.1For example, former posts within one year (τ− t < 12) give a power of 0; over one year but within two years
(12 ≤ τ− t < 24) give 1; etc..

9



Figure A2: Flow- and stock-type AI measurements

Notes: The figure shows a simulation of flow-type and stock-type AI measurements. For stock-type AI measurements, we simulate
various combinations of depreciation/appreciation factors, including seven choices of a (i.e., a = 0.7,0.8,0.9,1.0,1.1,1.2,1.3) and three
choices of b (i.e., b = 0.9,1.0,1.1).
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that of all other skills, matters.

We finally run regressions that replace the flow-type AI measure with stock-type AI measures,

using the same specification as that in Table 4 Column (3) (i.e., only control for industry-year-

quarter fixed effects) and Column (7) (i.e., additionally control for firm fixed effects). Coefficient

estimates of our main interest, i.e., the mitigation impact of AI on the shock-induced decline in input

elasticity, are shown in Table A7. We observe expected consistency in the sign and significance of

coefficients between flow-type and stock-type AI measures, and across different pairs of a and b.

The differences in magnitude mainly come from the differences in absolute levels of stock-type AI

measures. We should caution that these robust results can not argue for the conceptual validity of

one measurement over another; instead, they provide support that our choice of measurement is

not likely to threaten the identification in which the relation between AI and firm outcomes is the

primary interest.

Table A7: Coefficient estimates across stock-type AI measurements with different parameter values

a = 
Shock × stock-type AI × log employee 0.292*** 0.241*** 0.203*** 0.165*** 0.144*** 0.115*** 0.102*** 0.081*** 0.074*** 0.058***

(0.065) (0.019) (0.048) (0.014) (0.036) (0.011) (0.027) (0.009) (0.020) (0.007)
Shock × stock-type AI × log capital 0.129*** 0.135*** 0.087*** 0.092*** 0.059*** 0.063*** 0.041*** 0.044*** 0.029** 0.032***

(0.032) (0.023) (0.023) (0.016) (0.017) (0.011) (0.013) (0.008) (0.010) (0.006)

a = 
Shock × stock-type AI × log employee 0.421*** 0.348*** 0.293*** 0.239*** 0.207*** 0.166*** 0.148*** 0.117*** 0.107*** 0.084***

(0.092) (0.024) (0.068) (0.018) (0.051) (0.014) (0.038) (0.011) (0.029) (0.009)
Shock × stock-type AI × log capital 0.186*** 0.195*** 0.126*** 0.133*** 0.086*** 0.092*** 0.060*** 0.065*** 0.042** 0.046***

(0.046) (0.032) (0.033) (0.022) (0.024) (0.016) (0.018) (0.011) (0.014) (0.008)

a = 
Shock × stock-type AI × log employee 0.596*** 0.495*** 0.415*** 0.339*** 0.293*** 0.236*** 0.210*** 0.167*** 0.152*** 0.120***

(0.127) (0.032) (0.094) (0.023) (0.070) (0.017) (0.053) (0.013) (0.040) (0.011)
Shock × stock-type AI × log capital 0.263*** 0.275*** 0.178*** 0.189*** 0.122*** 0.131*** 0.085*** 0.092*** 0.060*** 0.066***

(0.064) (0.044) (0.046) (0.031) (0.034) (0.022) (0.025) (0.016) (0.019) (0.012)
FE: naics2*year*quarter Y Y Y Y Y Y Y Y Y Y
FE: firm N Y N Y N Y N Y N Y

0.8 0.9 1 1.1 1.2

b  = 0.9

b  = 1

b  = 1.1

0.8 0.9 1 1.1 1.2

0.8 0.9 1 1.1 1.2

Notes: This table shows the coefficient estimates of our main interest in the production function regressions, i.e., the mitigation impact
of AI on the shock-induced decline in input elasticity. AI is measured with stock-type variables, considering three choices of b (i.e.,
b = 0.9,1.0,1.1 and five choices of a (i.e., a = 0.8,0.9,1.0,1.1,1.2). Odd columns include fixed effects at the NAICS2-by-year-by-quarter
level. Even columns additional include fixed effects at the firm level. Standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01
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I Heterogeneity across Industries

In this section, we present the resilience test from stock-return analysis (Table A8) and the mecha-

nism test from production function analysis (Table A9) separately across industry sectors as defined

by the NAICS2 code.

We find robust evidence of AI resilience with nuanced differences across industries: manufac-

turing (NAICS2 = 31-33) and retail trade (NAICS2 = 44-45) sectors enjoy the most notable benefits

of AI as reflected by strongly mitigated production elasticity for both labor and capital inputs, and

resilient stock price during both in- and after-disaster periods; whereas utilities (NAICS2 = 21),

construction (NAICS2 = 23), wholesale trade (NAICS2 = 42), and transportation and warehousing

(NAICS2 = 48-49) sectors witness partial benefits of AI as reflected from higher elasticity for either

labor or capital inputs, and weaker impact on stock returns.

It is worth noting that, despite the heterogeneity among industry groups, we find two pieces of

evidence useful from the across-industry analyses. First, such effects are most significant among

firms in the manufacturing and retail trade sectors that rely heavily on their operations along

the supply chain, echoing our proposed mechanism that AI mitigates unexpected disruptions

potentially by handling the supply chain-related difficulties (e.g., sourcing raw materials and

components in due time, or scheduling the purchase of finished goods based on forecasts about

downstream sales). Second, the resilience test (i.e., stock return analyses at the firm-disaster

level) and the mechanism test (i.e., production function analyses at the firm-year-quarter level)

correspond to each other in a way that the most resilient industries tend to also be the most

responsive industries. This suggests that, despite two sets of analyses drawn from different

panels, the underlying connections largely stand.
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Table A8: Stock return analysis across industry groups

NAICS 2-digit = 11 21 22 23 31-33 42 44-45 48-49
(1) (2) (3) (4) (5) (6) (7) (8)

Before-disaster window
!(t=0) 1.716 -4.666 -13.397** -2.846*** 1.116 -7.394*** -10.202*** 0.792

(3.359) (3.895) (6.242) (0.859) (0.729) (2.106) (1.868) (1.581)
!(t=0) × Shock -0.103 0.514 0.574** 0.200 -0.153* 0.326 -0.068 0.267

(0.578) (0.377) (0.263) (0.205) (0.091) (0.231) (0.148) (0.377)
!(t=0) × AI 0.025 -0.066* -0.226*** 0.002 0.026** 0.126*** -0.001 -0.065*

(0.058) (0.037) (0.061) (0.027) (0.010) (0.044) (0.013) (0.038)
!(t=0) × Shock × AI 0.096 0.015 -0.181 0.295 -0.046 0.299 -0.015 -0.176

(0.106) (0.072) (0.232) (0.258) (0.044) (0.227) (0.035) (0.197)
During-disaster window

!(t=1) 0.090 0.112 -0.075 0.212* -0.006 0.108 -0.028 -0.054
(0.110) (0.179) (0.112) (0.116) (0.049) (0.101) (0.056) (0.117)

!(t=1) × Shock 3.444 -1.432** -1.274** -0.911*** -0.284* -1.146*** -0.379 -0.931
(2.398) (0.565) (0.558) (0.316) (0.149) (0.398) (0.260) (0.670)

!(t=1) × AI 0.084* 0.053 0.051 0.006 0.002 -0.022 -0.000 0.038
(0.042) (0.040) (0.046) (0.046) (0.009) (0.044) (0.022) (0.042)

!(t=1) × Shock × AI -0.709* 0.236** -0.149 -0.173 0.238** 0.223 0.236*** 0.651**
(0.356) (0.100) (0.466) (0.322) (0.091) (0.215) (0.080) (0.257)

After-disaster window
!(t=2) 0.080 -0.017 -0.066 0.101 -0.015 0.091 -0.028 -0.089

(0.084) (0.128) (0.068) (0.117) (0.048) (0.102) (0.056) (0.110)
!(t=2) × Shock 0.067 -0.632 -0.444* -0.634** -0.108 -0.756** -0.420** -0.318

(0.602) (0.448) (0.259) (0.253) (0.125) (0.321) (0.186) (0.474)
!(t=2) × AI 0.021 0.030 0.078* -0.022 -0.008 0.012 -0.006 0.024

(0.027) (0.018) (0.041) (0.029) (0.007) (0.031) (0.010) (0.031)
!(t=2) × Shock × AI -0.045 0.003 0.063 -0.129 0.140** 0.069 0.219*** -0.002

(0.128) (0.085) (0.165) (0.179) (0.062) (0.164) (0.056) (0.241)
!"# 1381 26062 22655 6188 272683 26422 40153 22353
!2 0.12 0.41 0.19 0.50 0.46 0.33 0.14 0.47
Control: HighTech Y Y Y Y Y Y Y Y
Control: Time-varying basics Y Y Y Y Y Y Y Y
FE: Firm + Disaster Y Y Y Y Y Y Y Y

Stock return

Notes: The table shows results from the pooled event study at each NAICS2 group. The dependent variable is the stock return. NAICS
2-digit code corresponds to agriculture, forestry, fishing and hunting (11), mining (21), utilities (22), construction (23), manufacturing
(31-33), wholesale trade (42), retail trade (44-45), transportation and warehousing (48-49). Standard errors in parentheses. * p < 0.1, **
p < 0.05, *** p < 0.01
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Table A9: Production function regressions across industry groups

NAICS 2-digit = 11 21 22 23 31-33 42 44-45 48-49
(1) (2) (3) (4) (5) (6) (7) (8)

Labor input
Log labor 0.685 0.841*** 0.260 0.685*** 0.480*** 0.363*** 0.907*** 0.260***

(1.401) (0.124) (0.177) (0.225) (0.033) (0.083) (0.093) (0.083)
Shock × log labor 0.647 -0.107 -0.160 -0.331 0.026 -0.204*** -0.106** -0.073

(0.699) (0.096) (0.105) (0.267) (0.024) (0.067) (0.054) (0.050)
AI × log labor -0.250 -0.072 -0.040 -0.497*** -0.007 0.060 0.028 -0.045

(0.756) (0.064) (0.057) (0.191) (0.008) (0.055) (0.025) (0.045)
Shock × AI × log labor -2.599* 0.136 0.360* 1.771** 0.080** -0.059 0.095** 0.228**

(1.440) (0.113) (0.198) (0.854) (0.041) (0.157) (0.043) (0.099)
Capital input

Log capital 0.272*** 0.143*** 0.023 0.062 0.182*** 0.225*** 0.108*** -0.003
(0.091) (0.024) (0.020) (0.058) (0.011) (0.030) (0.024) (0.022)

Shock × log capital -0.646* -0.177*** -0.162*** -0.106 -0.218*** -0.132*** -0.191*** -0.206***
(0.357) (0.030) (0.042) (0.100) (0.009) (0.023) (0.028) (0.026)

AI × log capital 0.214 0.009 -0.003 0.200*** 0.005 -0.027* -0.012 0.011
(0.314) (0.015) (0.024) (0.071) (0.003) (0.016) (0.011) (0.017)

Shock × AI × log capital 1.153* 0.103*** 0.045 -0.570 0.131*** 0.191*** 0.098*** 0.067
(0.596) (0.034) (0.086) (0.353) (0.015) (0.054) (0.015) (0.056)

Const. 0.281 1.834*** 3.379*** 0.852** 1.167*** 0.980*** 0.291 3.247***
(2.054) (0.169) (0.275) (0.418) (0.075) (0.192) (0.264) (0.172)

!"# 230 3225 2316 827 34692 3053 4109 2552
!2 0.83 0.76 0.79 0.71 0.85 0.80 0.80 0.83
Control:	HighTech Y Y Y Y Y Y Y Y
FE: naics2*year*quarter Y Y Y Y Y Y Y Y
FE: firm Y Y Y Y Y Y Y Y

Log value added

Notes: The table shows results from the production function regression at each NAICS2 group. The dependent variable is the log-
transformed value added. NAICS 2-digit code corresponds to agriculture, forestry, fishing and hunting (11), mining (21), utilities (22),
construction (23), manufacturing (31-33), wholesale trade (42), retail trade (44-45), transportation and warehousing (48-49). Standard
errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01
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J Validity Check with an Instrumental Variable

A concern remains that our results from IV regressions could be driven by unobservables that

simultaneously affect aggregate ability-AI score and firm performance along the dimension of

certain preexisting ability-based firm structures. Hence, we check the validity of our IV by testing

if firm fixed effects (considering both observed and unobserved firm-specific factors) could predict

the instrumented AI intensity. We first regress various measurements of firm performance on

generic control variables such as firm size as well as fixed effects at the firm level (columns 1, 3, 5,

7, 9, 11 in Table A10). Then, we retrieve the fitted value of firm fixed effects from above and use it

as an explanatory factor for the estimated AI intensity. The non-significance of firm fixed effects

(coefficients of term Firm f ixed e f f ect) supports no sign of the omitted variable problem.

Table A10: IV validity test

DV Log income IV Log sales IV Log costs IV Log expense IV Log ROA IV Log margin IV
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Log asset 0.668*** 0.044 0.544*** 0.041 0.390*** 0.041 0.453*** 0.043 0.065*** 0.037 0.061*** 0.038*
(0.027) (0.016) (0.008) (0.034) (0.007) (0.079) (0.004) (0.064) (0.003) (0.665) (0.005) (0.506)

Log employee 0.079 0.000 0.411*** 0.012 0.506*** 0.013 0.476*** 0.011 -0.057*** 0.006 -0.049*** 0.005
(0.048) (0.010) (0.016) (0.008) (0.014) (0.010) (0.009) (0.008) (0.006) (0.011) (0.009) (0.011)

Log leverage -0.622*** 0.169 0.506*** 0.108 0.418*** 0.109 0.319*** 0.513 -0.268*** 0.099 -0.076*** 0.108
(0.099) (0.251) (0.024) (0.089) (0.020) (0.096) (0.013) (0.040) (0.009) (0.095) (0.015) (0.093)

Book to market -0.890*** -0.036 -0.145*** -0.008 -0.076*** -0.005 -0.078*** -0.007 -0.039*** -0.007 -0.027*** -0.005
(0.034) (0.026) (0.009) (0.019) (0.008) (0.018) (0.005) (0.021) (0.003) (0.018) (0.005) (0.017)

R&D to sales 0.008*** -0.000 -0.000*** -0.000 0.000* -0.000 -0.000** -0.000 -0.000* -0.000 0.000 0.000
(0.002) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Master intensity -0.001 -0.002 0.001 -0.001 0.000 -0.001 0.001*** -0.001 0.000 -0.001 0.000 -0.001
(0.001) (0.001) (0.000) (0.001) (0.000) (0.001) (0.000) (0.000) (0.000) (0.001) (0.000) (0.001)

Firm fixed effect -0.007 0.004 -0.001 -0.011 0.038 0.030
(0.007) (0.007) (0.007) (0.013) (0.025) (0.015)

Cons. -1.000*** -0.191** 0.738*** -0.152** 1.182*** -0.154** 1.343*** -0.162*** -0.247*** -0.158** 0.039 -0.173**
(0.152) (0.045) (0.044) (0.032) (0.038) (0.032) (0.024) (0.027) (0.017) (0.033) (0.025) (0.036)

!"# 17166 14687 25422 20716 25398 20693 25394 20690 25146 20486 23583 19527
!2 0.10 0.18 0.37 0.21 0.35 0.21 0.61 0.21 0.07 0.21 0.01 0.20

VII II III IV V

Notes: The table shows validity check for the instrumental variable. Odd columns present regressions of various measurements of
firm performance on generic control variables including time-varying indices and time-invariant firm fixed effects. Even columns
present regressions of the instrumental variable on a set of explanatory variables plus the fitted values of firm fixed effects retrieved
from the corresponding previous regression. Standard errors in parentheses. * p < 0.1, ** p < 0.05, *** p < 0.01
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K Exogenous Change of Ability-AI Scores

As mentioned in the main text, our instrumental variable potentially suffers from two alternative

concerns: 1) if ability-AI scores seldom vary across time, then the variation in our instrument could

be dominated by firm baseline structure, thus accounting for little changes in AI investment;A.2 2)

if the ability-AI scores indeed vary, but managers somewhat foresee the suitability dynamics, firms

might alter their hiring strategy to embrace the changes in advance. Therefore, we run another set

of specifications in which we replace the time-series ability-AI scores with the abrupt changes in

ability-AI scores before and after exogenous shocks. The essential idea is that we are trying to find

an exogenous shock that alters the variation in our instrument variable (i.e., averaged ability-AI

score), and investigate if such variation leads to corresponding changes in the estimated effect of

our interest (i.e., AI mitigating disrupted production elasticity). This practice enables us to address

the above-mentioned two concerns that our instrumental variable 1) has little variation across time

(thus regressing to a weak instrument), and 2) is endogenously expected and manipulated by firm

managers (thus violating the exclusion condition). Ideally, we look for an event that is exogenous

and unexpected and induces different variations in the AI scores among abilities. As execution,

we reference Rock (2019) and exploit the sudden releases of the first major open-source machine

learning platform, TensorFlow, that significantly facilitates AI-related tasks, reduces AI-related

skill training costs, and boosts the AI-related skill supply. Because the release of TensorFlow is

totally unexpected by the market and purely due to Google’s strategic consideration, concern 2 is

inherently taken care of.

Figure A3 depicts the time-series AI scores for each ability, with red vertical lines indicating

the time of TensorFlow release (i.e., quarter 4 in the year 2015). We observe significantly different

trajectories of AI-score among abilities after TensorFlow release; in specific, some abilities become

more compatible with AI whereas others remain still. This suggests the validity of using this

event as an effective source to induce useful variations in ability-AI scores, hence addressing

concern 1. TensorFlow brings material changes because the AI index of each work activity is

affected by the feasibility of various tools being invented and released. AI programming has been

extremely technical-demanding, beyond the reach of all but the best-trained university graduates

who majored in computer science. The advent of machine learning platforms on which libraries

of off-the-shelf codes are available on-demand made AI programming more approachable by

generally trained labor. The open and free release further reduces the cost of firms exploiting such

A.2If firms with certain abilities in the very base year remain higher level of resilience throughout the following years,
and these certain abilities happen to be more compatible with AI, then the concern of little variation in ability-AI scores
across time series could be magnified, since now the time-series changes contribute little to the overall instrument
construction.
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platforms. Consequently, taking together the larger supply of AI-capable labor and the expanding

demands of AI-affordable tasks, the development of AI shall be fueled significantly along the

ability dimensions that better absorb relevant knowledge. The observation from Acemoglu et al.

(2022) that AI vacancy postings notably accelerated around 2015-2016 echoes our argument.

Figure A3: AI score among 52 abilities
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Notes: The figure depicts the time-series AI scores (i.e., compatibility of using AI) for each ability, with red vertical lines indicating
the time of TensorFlow release (i.e., quarter 4 in the year 2015). We observe significant differences among abilities in terms of the level
of AI compatibility, and the trajectories of AI compatibility changes after TensorFlow release. In specific, some abilities become more
compatible with AI whereas others remain at a lower level.

To exploit the changes in ability-AI scores induced by TensorFlow release, we construct a

weighted AI growth rate, i.e., the changes of ability-AI scores at year-quarter q compared to the

pre-TensorFlow year-quarter q0 weighted by the baseline share of abilities, as defined below:

AI Growthi,q =
∑
a∈A

BaseSharei,a,q0 ×
AI Score−i,a,q−AI Score−i,a,q0

AI Score−i,a,q0
(14)

With this variable of changes, our research question transforms from whether the level of AI

affects the level of factor elasticity to whether the changes of AI affect the changes of factor elasticity.

To empirically test the latter question, an ideal estimation procedure would be to first calculate

the factor elasticity within each firm-by-year-by-quarter cell, then regress the differences of factor
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elasticity across time on the differences of AI intensity (i.e., AI growth rate) and shock severity.

However, due to the widely-documented challenge in estimating firm-specific factor elasticity

(Brynjolfsson and Hitt 1995), we omit the first step and estimate with one single equation that is

directly derived from equation (7). After organizing together the identical terms, we obtain the

following equation:

lnVAq− lnVA0 =α0(lnKq− lnK0)+

α1(Shockq× lnKq−Shock0× lnK0)+

α2(lnKq× (1+AI Growthq)− lnK0)×AI0+

α3(Shockq× lnKq× (1+AI Growthq)−Shock0× lnK0)×AI0+

β0(lnLq− lnL0)+

β1(Shockq× lnLq−Shock0× lnL0)+

β2(lnLq× (1+AI Growthq)− lnL0)×AI0+

β3(Shockq× lnLq× (1+AI Growthq)−Shock0× lnL0)×AI0

(15)

where for simplicity, we omit the subscript i indicating firms. Essentially, the regression answers:

how does the change in AI (i.e., before and after TensorFlow release) affect the change in the out-

come variable (i.e. value added) especially when there is an exogenous change in the uncertainty

level (i.e., Shockq , Shock0). α0 estimates the effect of labor input changes on value-added changes

(shorthanded as the elasticity effect) at the baseline level. α1 estimates the elasticity effect when

there are accompanying changes in the uncertainty level. α2 estimates the elasticity effect when

there are accompanying changes in the AI intensity. α3 estimates the elasticity effect when there are

both accompanying changes in the uncertainty level and in the AI intensity. β coefficients follow

the same logic but for capital input. Our coefficients of interest, α3 and β3 corroborate our tests for

AI mitigating the disruptive elasticity of input during uncertain periods.

A caveat is that, for the estimation of α2 and α3 (same for β2 and β3), the impact of any change

in AI (i.e., AI Growthq) depends on the pre-TensorFlow level (i.e., AI0).A.3. Hence, as a robustness

check, we consider pre-TensorFlow level of AI at different time points in Table A11. We consider

AI0 at one quarter (Columns 1, 4), one year (Columns 2, 5), and three years (Columns 3, 6) before

TensorFlow release. We run regressions with either raw (Columns 1-3) or instrumented (Columns

4-6) index of AI intensity.

Consistent with our earlier findings, Table A11 shows positive elasticity effects at the baseline

A.3Note that different from a standard Bartik-style shift-share regression where only the variable of changes (i.e.,
AI Growthq) is included (Borusyak et al. 2022), we need to also include the variable at pre-TensorFlow level (i.e., AI0)
due to the constraint from the formally-structured production function.
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Table A11: Regressions with Bartik IV

(1) (2) (3) (4) (5) (6)
alpha0 0.677*** 0.403*** 0.429*** 0.744*** 0.570*** 0.582***

(0.049) (0.057) (0.061) (0.088) (0.090) (0.092)
alpha1 -0.132*** -0.085*** -0.078** -0.229** -0.181* -0.096

(0.026) (0.026) (0.031) (0.112) (0.107) (0.118)
alpha2 -0.347 -0.088* -0.082 0.015 0.015 0.018

(0.546) (0.050) (0.054) (0.031) (0.033) (0.034)
alpha3 0.071*** 0.108*** 0.067** 0.030 0.030 -0.027

(0.022) (0.024) (0.028) (0.042) (0.041) (0.045)
beta0 0.094*** 0.059*** 0.099*** 0.200*** 0.163*** 0.187***

(0.014) (0.015) (0.015) (0.032) (0.034) (0.036)
beta1 -0.169*** -0.176*** -0.214*** -0.298*** -0.318*** -0.328***

(0.010) (0.011) (0.012) (0.041) (0.040) (0.043)
beta2 -0.026* 0.002 -0.024 -0.004 -0.001 -0.004

(0.014) (0.024) (0.024) (0.012) (0.013) (0.014)
beta3 0.033*** 0.070*** 0.069*** 0.056*** 0.067*** 0.077***

(0.009) (0.011) (0.010) (0.016) (0.016) (0.017)
Cons. -0.040*** 0.083*** 0.030** 0.145*** 0.047*** -0.022

(0.013) (0.012) (0.012) (0.014) (0.016) (0.014)
!"# 12486 12448 12199 11930 12357 12486
!2 0.32 0.32 0.32 0.32 0.35 0.31
FE Y Y Y Y Y Y

Difference in log valued added

Notes: The table shows results from the Bartik-style regressions. The dependent variable is the difference in log-transformed value
added before and after the TensorFlow release. The pre-TensorFlow level of AI is considered at different time points: one quarter
(Columns 1, 4), one year (Columns 2, 5), and three years (Columns 3, 6) before TensorFlow release. Columns 1-3 use raw AI intensity;
columns 4-6 use instrumented AI intensity.
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line (as suggested by significantly positive estimates of α0 and β0), weaken elasticity effect consid-

ering any changes in uncertainty level (as suggested by significantly negative estimates of α1 and

β1), non-impacted elasticity effect considering any changes in AI but no changes in uncertainty

level (as suggested by insignificant estimates of α2 and β2), while positively mitigated elasticity

effect considering changes in both uncertainty level and in AI (as suggested by largely positive

estimates of α3 and β3).
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L Discussion on Multiple Treatment Periods and Continuous Dosage

Issues

In our pooled event study setting (Section 4), there are two treatments. Clearly, natural disasters

serve as the baseline treatment. As for AI investment, although we consider it as an interaction term

in the regression, our augmentation with the instrumental variable adds causal explainability to the

interpretation. Thus, we tend to recognize both natural disasters and AI investment as treatments.

We illustrate the two concerns (i.e., multiple treatment periods and continuous dosage) for both

treatments as follows.

The problem of multiple treatment periods lies in heterogeneous treatment effects over time.

We were not be able to find an appropriate estimator to rigorously resolve this issue in our

setting because of the following reasons: (a) most available estimators focus on an absorbing

treatment such that the treatment status over time is a non-decreasing sequence of zeros and then

ones, while our treatments take values that switch between zeros and ones; (b) most available

estimators deal with binary or discrete treatments, while our treatments are continuous (which

are related to the continuous dosage issue in the next paragraph); (c) most available estimators

consider one treatment, while we have two sets of independent treatments (shocks from disaster

and AI intensity) at the same time.A.4 To probe into the severity of this concern, instead, we look

into the possible across-disaster heterogeneity in our results. For treatment effects at different

periods, we refer to Baker et al. (2022) and plot the distribution of coefficient estimates from

each event (i.e., every single disaster) in Figure A4. The approximately normal distributions

have narrow dispersion, meaning less heterogeneity among coefficients estimated at different time

points. Therefore, the multiple treatment periods issue in our context is not a severe concern.

The problem of continuous treatment centers around the heterogeneous causal responses to

an additional treatment unit when conditional on different levels of existing treatment (Callaway

et al. 2021). We follow the canonical literature (Flores et al. 2012) and estimate the dose-response

function with a partial mean estimator.A.5 The process is as follows. First, we discretize the

continuous treatment variable into ten bins (i.e., analogous to ten dosages in canonical examples).

Second, we run the regressions of interest respectively among samples from different bins (i.e.,

analogous to different levels of dosage in canonical examples). Note that in these sub-sample

regressions, the treatment variable is a dummy and the control group consists of matched firms

A.4Although we could combine two treatments into one by separately discretizing and then multiplying together to
get all possible treatment pairs, it is hard to interpret the estimated results to disentangle what variation dominates the
effect and in what ways.

A.5This procedure is the same as the dose-response function we use in the Section 4.
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with zero treatment (i.e., with zero AI investment, analogous to zero dosage in canonical examples).

Finally, we calculate the estimated average treatment effect across levels (i.e., the average effect of

being treated with a particular number of doses) by averaging all other independent values within

the corresponding sub-sample.

To illustrate clearly, we demonstrate the procedure where AI is considered as the varying

treatment of interest. First, we rank all the firm-by-disaster observations with AIi,e > 0 by their AIi,e

and divide them into 10 groups by the decile, denoted as group Π j,AIi,e>0 where j ∈ [1,10]. For one

observation unit (i,e) (firm-by-disaster), if its value AIi,e is in the jth decile of the rank, we say this

observation belongs to the jth group, (i,e) ∈Π j,AIi,e>0. We then match the observations in each group

Π j,AIi,e>0 with observation units of similar observed characteristics but AIi,e = 0. These matched

observations form the control groupsΠ j,AIi,e=0. The groupΠ j =Π j,AIi,e>0∪Π j,AIi,e=0. Now, we obtain

ten groups of observations, each group Π j consisting of both AI units (AIi,e > 0) and non-AI units

(AIi,e = 0). For each group Π j, we run the following regression with all the observations (i,e) ∈Π j:

Returni,e,t =
∑

T=0,1,2

I{t = T}(αtShocki,e+βt1i,e+γtShocki,e×1i,e)+Xi,eϕ+εi,e,t (16)

Note that 1i,e is a dummy variable that equals one if the focal observation (i,e) has AIi,e > 0,

and zero if AIi,e = 0. Finally, the average treatment effect for each group Π j is calculated by

αtShocki,e+βt1i,e+γtShocki,e×1i,e+Xi,eϕ, where · · · denotes the average of values for all observations

(i,e) ∈Π j.

We plot the estimates from the dose-response calculation in Figure A5 (considering AI as a

varying treatment) and Figure A6 (considering shock as a varying treatment). We find approxi-

mately linear dosage effects for both variables, AI and uncertainty shock, alleviating the concern

about large heterogeneity across levels. Nevertheless, we do observe a slightly increasing dosage

response as the shock reaches the severest or the AI reaches the highest. Therefore, the results from

models with a continuous treatment variable could potentially be biased and should be interpreted

with caution.
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Figure A4: Distribution of coefficient estimates from event studies.
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Notes: These plots show the kernel density distribution of the coefficient estimates from regressions with each event study. α and γ
are the estimates in Equation (4) in the paper.

Figure A5: Heterogeneous treatment effects by different levels of AI intensity
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Notes: The vertical axis shows the estimated daily stock return (i.e., estimated treatment effect at T=1/2 compared to T=0). The
horizontal axis shows the three window periods: before, in and after the disaster event. Colors mark different levels of AI intensity
(i.e., the continuous AI intensity variable discretized into decile).
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Figure A6: Heterogeneous treatment effects by different levels of uncertainty shocks
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Notes: The vertical axis shows the estimated daily stock return (i.e., estimated treatment effect at T=1/2 compared to T=0). The
horizontal axis shows the three window periods: before, in and after the disaster event. Colors mark different levels of uncertainty
shock (i.e., the continuous shock variable discretized into decile).
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