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The resale of used products presents the challenge of cannibalization, particularly pronounced in digital
goods markets where perfect substitutes are easily replicable. In this paper, we assert that, rather than
a threat, resale can serve as an effective pricing tool for managing heterogeneous demand. We consider
a seller of digital goods/services who offers a contract to a heterogeneous group of customers at a fixed
price for a specified amount of usage allowance. Rather than imposing restrictive sharing barriers, the seller
allows subscribers to share their allowances with others in a secondary market. Our analysis reveals that the
seller’s optimal strategy involves facilitating resale by eliminating transaction costs. The sharing contract
effectively achieves the same outcome as a two-part tariff, wherein subscribers pay an entry fee along with
a marginal usage rate. Both approaches generate equivalent revenue and market coverage, and result in
idential demand and individual surplus for customers of the same type. Consequently, the sharing contract
acts as a mechanism for price discrimination. Our finding provides a new perspective on peer-to-peer resales
and also challenges the conventional belief that successful price discrimination hinges on preventing resale.

1. Introduction
Conventional wisdom suggests that the resale of used physical goods, especially durable ones, provides

close substitutes for new goods and thus could cannibalize sellers’ profits in the primary market.

Empirical studies across various industries (e.g., Ghose et al. 2006 for used books, Chen et al. 2013 for

automobiles and Shiller 2013 for video games) also support this proposition. Firms are often forced

to take substantial efforts in curtailing such cannibalization. Common strategies include planned

obsolescence (Bulow 1982)—deliberate reduction of product durability, retail price markup of new

goods (GAO 2005), and frequent product updates (Yin et al. 2010).

In digital goods markets, cannibalization may be exacerbated for two main reasons: (1) sharing a

copy of the digital good does not prevent the sharer from enjoying it, and (2) shared or used digital
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goods are perfect substitutes for new ones. To address the first issue, digital rights management

(DRM) technologies have been developed to prevent unauthorized access to the product or service. For

instance, e-books downloaded to a Kindle account cannot be transferred to another device. However,

the second problem poses a greater challenge because a shared digital good functions identically to

the original copy. In this scenario, a primary market seller faces significant revenue loss as the seller

of the used product can offer a perfect substitute at a lower price.

However, digital goods also exhibit substantial distinctions from physical goods, and these unique

characteristics may offer potential solutions to cannibalization. On one hand, the resale of many

digital goods, such as downloaded video games and mobile data, can be effortlessly traced via seller

re-licensing and re-authorization, whereas obtaining such records for physical products once they are

sold is nearly impossible. This traceability of sold digital products makes it technologically feasible

for sellers to participate in and monetize the secondary market. On the other hand, sellers intending

to participate in the secondary market of digital goods have more tools at their disposal. One such

tool is the control over usage allowance, which is often a critical component of digital products,

such as mobile data for telecommunication services and storage space for cloud services.The usage

allowance provides sellers with a new avenue to navigate not only the primary market but also the

secondary market.

An increasing number of sellers have recognized the unique characteristics of digital goods and

begun allowing peer-to-peer resales. China Mobile Hong Kong (CMHK) launched an experimental

pricing scheme called “sharing pricing” in 2013. Under this scheme, subscribers of CMHK’s monthly

data plan, which offers a fixed allowance at a specified price, can resell unused allowances to other

subscribers via peer-to-peer trading on CMHK’s platform. As of mid-2018, it was estimated the

platform facilitates daily transactions in the magnitude of 10,000 GBs at an average price of HK$15

(approximately US$2) per GB (Huang et al. 2021).

This innovative pricing model diverges from the conventional approach to price discrimination (e.g.,

two- and three-part tariffs) adopted by most carriers. It also appears to challenge the conventional

belief that the success of price discrimination hinges critically on a firm’s ability to prevent a resale

market—a perceived necessary condition for the effectiveness of nonlinear pricing (e.g., Oi 1971,

Wilson 1993). (The quantity discount feature of nonlinear pricing can create arbitrage opportunities,

where a customer buying a large order can profit by splitting it into several smaller lots and reselling

them to others.) It seems paradoxical that a firm capable of implementing price discrimination with

tightly restricted resale would instead embrace resale, potentially jeopardizing its success.
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Similar instances of digital goods resale are evident in cloud storage services. Rather than adhering

to industry norms of offering bucket contracts that entail a fixed monthly fee for a specific storage

amount1, Livedrive, a subsidiary company of the Nasdaq-listed digital media company Ziff Davis

specializing in online cloud backup and storage service, provides a subscription plan for 5TB of

cloud storage at £39.95 per month2 with a resale feature that enables subscribers to resell storage

allowances and share their total available space with others.

The above examples clearly illustrate the divided opinions among practitioners regarding the resale

of digital goods. Considering the advantages and disadvantages of digital goods, it remains unclear

from the literature to what extent their unique characteristics would support or hinder resales.

In this paper, we use a game-theoretic model to quantify a seller’s strategy in a secondary market

when the unique characteristics of digital goods can be exploited. Specifically, we consider a digital

goods seller who offers heterogeneous customers a contract of a digital good/service (e.g., e-books,

mobile data, or storage space) by charging a fixed price for a specific amount of usage allowances.

The novel feature of this contract is that subscribers are allowed to share their allowances to others

in a peer-to-peer resale market at a transaction cost that is determined by the seller. We thus refer

to this contract as a sharing contract.

We characterize the optimal sharing contract and evaluate its performance. Contrary to existing

literature, we find that the digital-goods seller’s optimal strategy is to charge zero transaction cost.

In other words, the seller should consciously promote resale and should not make any profit from

resale transactions. We show that the optimal sharing contract performs the same as the optimal

two-part tariff, in which subscribers pay an entry fee for access to the service and a marginal rate

of usage. Not only do the two contracts yield identical revenue, they also result in the same market

coverage and the same demand and individual surplus for customers of the same type. Therefore,

the sharing contract establishes price discrimination and is essentially a form of nonlinear pricing.

Our findings demonstrate how the distinctive features of digital goods can be utilized to address

challenges arising from digitization. In our model, the digital goods seller has the technical capability

to monitor all secondary-market allowance exchanges, ensuring that no resale revenue goes unnoticed.

However, despite this traceability, the seller does not tax on each resale at all. This outcome suggests

that traceability of digital goods is not crucial for managing resales, as the seller does not profit from

it at optimality.

1 For example, Dropbox, a file hosting service provider, offers 2TB of cloud storage for $9.99 a month.
2 https://www2.livedrive.com/ForResellers
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We argue that the usage allowance effectively prevents profit loss from cannibalization: the seller

utilizes the allowance in conjunction with the price to regain revenue upon initial sale of the sharing

contract. Specifically, the seller determines the optimal allowance to ensure that the total supply

to all subscribers matches the total usage induced by the optimal nonlinear contract. This choice

of allowance results in a market-clearing resale price that is identical to the marginal rate of the

optimal nonlinear contract. Subscribers seeking additional data purchase from those with unused

allowances at the same cost they would have paid to the seller in a nonlinear contract. In anticipation

of subscribers’ resale revenue, the seller raises the price of the sharing contract to recoup the “lost”

revenue from resales. Consequently, resale does not compromise the seller’s revenue and performs

comparably to the optimal nonlinear contract, which is recognized as an effective pricing strategy for

managing heterogeneous demands (e.g., Oi 1971, Schmalense 1981, Rochet and Stole 2002).

Our work offers a new perspective on understanding the peer-to-peer resales and sheds new light

on price discrimination. First, the sharing contract is a vehicle of price discrimination. Although it

charges an a priori non-discriminatory price to all customers, peer-to-peer resale plays the discrim-

inatory role of re-allocating the total supply to customers with heterogeneous demand. Second, our

findings demonstrate the possibility of second-degree price discrimination even within a resale mar-

ket. Conventional wisdom suggests that successful second-degree price discrimination, or equivalently

nonlinear pricing, relies on preventing resale (e.g, Oi 1971, Wilson 1993), since the quantity discount

nature of nonlinear pricing may cultivate arbitrage opportunities such that a customer buying a large

order profit from breaking the order into several smaller lots and reselling them. However, our results

suggest that the existence of a secondary market does not necessarily hinder the success of price

discrimination. With price discrimination implemented through the sharing contract, resale becomes

a necessary condition for success.

Despite the theoretical equivalence, sharing pricing and nonlinear pricing may not be used inter-

changeably in practice. The specific nature of the digital good has to be taken into account. Conven-

tional nonlinear pricing schemes, such as two- and three-part tariffs, typically rely on the marginal

rate to differentiate customers based on their demands. This approach is appropriate when a cus-

tomer’s actual consumption can be accurately measured, such as mobile data usage. Thus, nonlinear

pricing may have an edge over sharing pricing due to the additional infrastructure cost of a trading

platform. This is consistent with the CMHK’s fade-away of its user trading platform.3 However, it

can be challenging for many digital goods to have a consensus on the user’s consumption. Consider

cloud file hosting services, where individual storage space usage may vary significantly as users add

3 CMHK discontinued the platfrom in 2019.
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or remove files. In such cases, adopting a two-part tariff may lead to ambiguity in defining actual

usage—whether it’s the maximum used space within a given time period, the average used space,

or the space used at a specific time each month. This ambiguity arises because customer usage in

cloud storage services may increase or decrease in a defined period of time, whereas the usage of

other digital goods such as mobile data only increases. In light of this, sharing pricing emerges as an

effective approach to monetizing from heterogeneous customers, particularly when their consumption

levels may fluctuate either upward or downward in the measuring time frame, such as cloud storage

services. This provides a theoretical explanation of Livedrive’s long-lasting commitment to its reseller

program since 2010.

The rest of the paper is organized as follows. Section 2 reviews relevant literature on nonlinear

pricing and market resale. In Section 3, we use a simple example with two types of customer to

illustrate the equivalence of sharing pricing and two-part tariffs and to elaborate the rationale of

equivalence. A model with a general class of continuous customer heterogeneity is presented and

solved in Section 4. We prove the equivalence of the continuous model and generalize the results in

Section 5. Section 6 explores how consumer psychological costs may affect effectiveness of sharing

and nonlinear contracts before making several concluding remarks in Section 7.

2. Related Literature
Our work is related to nonlinear pricing for price discrimination. In his influential work, Oi (1971)

reveals that a two-part tariff not only is efficient in fulfilling customers’ heterogeneous demands but

also achieves a higher profit than a flat rate, which can be considered as a special case of the bucket

pricing with an unlimited allowance. We refer to Wilson (1993) for a comprehensive overview of early

studies in nonlinear pricing.

Recent studies on nonlinear pricing focus on the rise of three-part tariffs in telecommunication

services and explore their advantages over two-part tariffs. First, the “free” allowance in a three-part

tariff elevates customers’ valuations of the service and thus increases the provider’s revenue (Ascarza

et al. 2012). Second, three-part tariffs are often more efficient than two-part tariffs thanks to the

additional instrument—allowance. It has been shown that a small menu of three-part tariffs can be

more profitable than a menu of two-part tariffs of any size (Bagh and Bhargava 2013). Moreover, a

menu of three-part tariffs just performs as well as any nonlinear pricing mechanism when there are

only two types of customers (Masuda and Whang 2006). Third, the fixed allowance in a three-part

tariff allows the service provider to exploit customer demand uncertainty. Grubb (2009) proves that

three-part tariff is an effective nonlinear pricing scheme for the service provider when customers
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exhibit a tendency to overestimate the precision of demand forecasts and hence underestimate the

variance of future demand. Empirical work also esitmates the revenue gain a service provide may gain

from consumers’ biased expectations and inattention to usage (e.g., Grubb 2012, Grubb 2015, and

Grubb and Osborne 2015). It also has been shown that demand uncertainty motivates customers

to choose a three-part tariff with a larger allowance (Lambrecht et al. 2007) or a flat-rate unlimited

plan (Lambrecht and Skiera 2006) even though a tariff with a smaller allowance indeed is a better

choice. Yet, customers are able to learn their demand variations (Miravete 2002), despite some level

of errors (Gopalakrishnan et al. 2015).

Although three-part tariffs are prevalent, it is challenging to characterize their optimal terms both

in theory and empirically. Fibich et al. (2017) give out the first closed-form solution when customers

are of two segments. Bhargava and Gangwar (2018) later propose a reformulation of the revenue-

maximization problem for a general class of customer heterogeneity and structurally connect the

optimal three-part tariffs and optimal two-part ones. We refer to Iyengar and Gupta (2009) for a

detailed review on the empirical-driven difficulties of calculating optimal nonlinear pricing schemes.

Our paper contributes to the nonlinear pricing literature by describing a novel and non-

discriminatory approach to price discrimination with a resale market—sharing pricing. We show that

this novel mechanism is equivalent to nonlinear pricing in a frictionless resale marketand we establish

the rationale for the equivalence. Huang et al. (2021) consider user trading that is similar to the

sharing pricing. They rationalize the peer-to-peer sharing as a remedy for consumer overage disutility.

In contrast, we demonstrate that peer-to-peer sharing can be an approach of price discrimination.

Peer-to-peer sharing also resembles the resale of used goods in a secondary market. Early stud-

ies believe that a secondary market may cannibalize the primary market (see, e.g., Levhari and

Srinivasan 1969 and Rust 1986 for theoretical analyses and Hendel and Lizzeri 1999 for empirical

evidence). Further reflection suggests that a secondary market may also increase primary demand,

instead of cannibalizing it, if customers are strategic and anticipate a resale value (e.g., Hendel and

Lizzeri 1999, Ishihara and Ching 2019). While firms can adjust their product upgrade frequencies to

counteract peer-to-peer resale (e.g., Yin et al. 2010 for myopic customers and Guo and Chen 2018 for

forward-looking customers), they may also take advantage of a secondary market to implement price

discrimination (Anderson and Ginsburgh 1994) or coordinate channels (Desai et al. 2004, Shulman

and Coughlan 2007). A fundamental difference between our paper and the literature on secondary

markets of used goods is that the value of the resold goods does not depreciate in our setting.

Therefore, customers’ inter-temporal valuations do not play any role. Moreover, we consider a case

where customers consume multiple units of the goods. The provider thus has one more instrument to
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leverage—the usage allowance. As we will show, this additional instrument helps establish the effect

of price discrimination.

Secondary markets may also exist among retailers. When inventory is in shortage or excess, resale

may occur among retailers to match supply with demand. This practice is often referred to as

transshipment. One stream of research in transshipment concerns retailers’ inventory stocking and

allocation policies, e.g., Anupindi et al. (2001), Rudi et al. (2001), Granot and Sošić (2003), Sošić

(2006), Çömez et al. (2012). The other stream investigates the impacts of transshipment on the

profitability of supply chain members. Lee and Whang (2002) show that while transshipment among

retailers improves market efficiency and benefits retailers, its impacts on the upstream manufacturer

is indeterminate when the wholesale price is held exogenous. Dong and Rudi (2004) further point out

that transshipment can also improve the manufacturer’s profit if transshipment occurs among outlets

of a chain store and the wholesale price is endogenously chosen. We refer to Paterson et al. (2011) for

a detailed discussion on transshipment. Although the literature in this line of research is enormous,

impacts of pricing schemes are usually of little interest since linear pricing, i.e., charging an exogenous

wholesale price for each sold unit, is the convention in supply chains. However, our work captures

the interaction between the provider’s initial pricing choice and the underlying reselling dynamics

and investigates the effectiveness of different pricing schemes for heterogeneous customers.

3. An Illustrating Example: The Case of Two Customer Types
In this section, we illustrate graphically the equivalence of nonlinear pricing, in particular a two-part

tariff, and peer-to-peer sharing pricing in a frictionless resale market. This simple two-type model not

only visualizes the equivalence of the two contracts but also demonstrates the essential reason behind

why such an equivalence holds—the one-to-one correspondence of marginal prices and aggregate

demands. The same intuition applies when customer types follow a continuous distribution. However,

the algebra is much more cumbersome; we discuss it in Section 5.

Suppose there are two customers: one customer is the high type with a valuation parameter θh;

the other customer is the low type with a valuation parameter θl (θl < θh). The demands of the two

customers are described in Figure 1(a) as di = θi − p̂, i ∈ {l, h}, where p̂ is the unit marginal price of

the goods. The light blue bold line represents the aggregate demand of both customers as a function

of p̂. The provider cannot recognize the customers’ types and offers a uniform contract to both. For

digital goods, we assume that the marginal cost is zero, and it is optimal to serve both customers.4

We first review the design of an optimal nonlinear contract, i.e., a two-part tariff. For a given entry

fee, points C, D, and E in Figure 1(a) exhibit the low-type, high-type, and aggregate demands at a

4 It is indeed optimal to serve both customers if additional conditions on θl and θh are imposed.
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Figure 1 Optimal Contracts: Two Types of Customers

(a) Two-Part Tariff (b) Sharing Contract
marginal price p̂, respectively. The provider’s total revenue from the marginal charge is thus equal

to ABEE′O = ABCC′O + ABDD′O, where ABCC′O and ABDD′O denote the areas of the polygons and

they represent the revenue contributions from the low- and high-type customers. The low and high

types collect surpluses of ALCB and AHDB, respectively. Next, we turn to the choice of the entry fee.

It is evident that in the case where both customers are served, the highest entry fee must be the

one where the provider extracts all surplus from the low-type customer. Graphically, this means that

the entry fee is equal to the area of triangle LCB, i.e., ALCB. Consequently, the optimal two-part

tariff maximizes the entry fee from both customers plus the revenue from marginal charges; i.e., it

maximizes 2ALCB +ABEE′O. In the case of Figure 1(a), the optimal entry fee is (3θl −θh)2/8, and the

optimal marginal price is (θh −θl)/2, which leads to the low- and high-type demands dl = (3θl −θh)/2

and dh = (θl + θh)/2, respectively.

We next discuss the optimal sharing contract and elaborate its equivalence to a two-part tariff.

The service provider still charges an entry fee but not a marginal price. Instead, the entry fee entitles

customers to a usage allowance of Q units of the goods. Moreover, customers are allowed to trade

their allowances freely on a resale market where their heterogeneous demands are fulfilled via a

market clearing mechanism. The service provider has no direct control over the peer-to-peer sharing

market, but she determines the entry fee and the associated allowance Q to maximize her revenue.

Figure 1(b) illustrates the design of a sharing contract. Without loss of generality, let us consider

an allowance Q ∈ [θl, θh] (thus a total supplied allowance of 2Q) and focus on the sharing market

dynamics.5 In this case, the low-type customer’s utility-maximizing consumption level is equal to θl

units, which results in Q−θl units of unused allowance. Meanwhile, the high-type customer uses up all

of their allowances and is still interested in having more for a higher utility. The supply and demand

sides of a resale market are thus formed. Now consider how the unit resale price, or equivalently

5 It is straightforward to show that the optimal allowance must be between θl and θh.
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the market-clearing price, arises. For the high type, his demand curve is still dh = θh − p̂, which is

represented by line Q′D. The low type apparently has no problem with giving away Q − θl units for

nothing. Yet he could be more strategic to sell more than Q − θl units. Note that when selling more

than Q − θl units, the low-type customer’s utility declines as his consumption drops. As a result, the

reduction in his utility becomes the cost of his supply to the resale market, and they both change at

the same rate. Specifically, DD′G depicts the supply cost and the symmetry of DD′G with CLC ′

with respect to Q′Q reflects its equivalence to the reduction in low type’s utility. Correspondingly,

GD represents the low type’s supply curve. Therefore, the intersection of the demand curve Q′D

and the supply curve GD defines the market-clearing equilibrium at point D, whose vertical and

horizontal coordinates represent the equilibrium market clearing price and the high type’s demand,

respectively. As a result, the utility of the high type equals to AHQ′QO + AQ′DF , where AQ′DF

is his utility gains from the peer-to-peer resale. For the low type, the horizontal coordinate of C

corresponds to his effective usage allowance after resale. Therefore, the utility of the low type equals

to ALCC′O + AF DD′Q, where AF DD′Q is his utility gains from the peer-to-peer resale.

With an understanding of the sharing market, we now consider the choice of the entry fee. Again,

we use Figure 1(b) for elaboration. As with the two-part tariff, the service provider sets the entry

fee so that the low-type customer earns zero surpluses. Since the low-type customer earns a utility

of ALCC′O + AF DD′Q and AF DD′Q = ACF QC′ by symmetry, the entry fee for a given Q is thus equal

to ALCC′O + ACF QC′ , which can be rewritten as ALCB + ABF QO. Next, let us examine the effect

of the allowance choice on the sharing contract. As Q increases, i.e., QQ′ shifts right, there are

more supplies from the low type, and the market-clearing equilibrium D shifts downward along Q′D.

As a result, ALCB and ABF QO both vary as the allowance Q changes. The service provider thus

sets the allowance Q to maximize her total revenue 2(ALCB + ABF QO) from both types. Moreover,

since the aggregate demand equals the total allowance 2Q under the market clearing mechanism,

i.e., BE = 2BF , then ABEE′O = 2ABF QO. Consequently, the optimal trading contract effectively

maximizes 2ALCB + ABEE′O—the same objective as the optimal two-part tariff. Therefore, we have

the equivalence of the two contracts. It can be further shown that the optimal allowance Q∗ = θl

and the resulting market clearing price equals (θh − θl)/2, which coincides with the optimal marginal

price under the optimal two-part tariff. The low type consumes d∗
l = (3θl − θh)/2 units of allowance

after selling (θh − θl)/2 units to the high type, who consumes d∗
h = (θl + θh)/2 units in total with

(θh − θl)/2 units purchased from the resale market.

Although the nonlinear two-part tariff and the sharing contract are implemented in seemingly

distinct ways—one offering discounts for large volume consumption and one charging a uniform price
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to all, they are in fact equivalent. Figures 1(a) and 1(b) demonstrate this equivalence by geometrically

showing the two pricing schemes’ identical revenue-maximizing objectives, which can be achieved by

choosing the position of E on the aggregate demand curve. The one-to-one correspondence between

the marginal price and the aggregate demand ensures that only one of them needs to be maneuvered

for optimality. As shown in Figure 1(a), the nonlinear two-part tariff controls the position of E

by setting the marginal price, which leads to the optimal aggregate demand and is also directly

used to differentiate customers according to their heterogeneous demands. In contrast, the sharing

contract in Figure 1(b) adopts another approach: it controls the total supply, and thus the aggregate

demand, by consciously setting the allowance and relies on the peer-to-peer resale to fulfill customer

heterogeneous demands. In sum, the one-to-one correspondence between the marginal price and the

aggregate demand paves the way for the equivalence.

In comparison with the nonlinear two-part tariff, the sharing contract imposes a non-discriminatory

price for all customers despite their heterogeneity. Moreover, the sharing contract does not pro-

hibit a resale market. In fact, it takes advantage of resale to discriminate in meeting heterogeneous

demands. However, its efficiency may depend on the potential market friction in the peer-to-peer

resale process—an issue nonexistent for a nonlinear two-part tariff.

In the rest of the paper, we generalize and extend the equivalence of the nonlinear contract and

the sharing contract to the case where customer types follow a continuous distribution. We show that

the key insight and intuition remain true with more realistic assumptions.

4. Model Description and Optimal Contract Design
In this section, we will first layout the micro-model of customer consumption decisions and then

characterize the optimal contracts. Specifically, we will consider the optimal terms of the sharing

contact and the nonlinear contract. We also provide the analysis of the bucket contract in EC1.

4.1. Customer Profile

Consider a monopoly (she) that offers a service contract to potential customers. We assume that the

marginal variable cost of the service is zero once the facility and infrastructure are established and

the maintenance cost is approximately fixed. This assumption is often valid for digital goods, such

as e-books, cellular data and cloud storage (e.g., Essegaier et al. 2002, Sundararajan 2004, Bhargava

and Gangwar 2018).

Without loss of generality, we normalize the total market size to one (e.g., Essegaier et al. 2002,

Bhargava and Gangwar 2018) and assume customers are infinitesimal relative to the market size.

Customers have heterogeneous valuations for the goods. For each unit consumed, a type-θ customer
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(he) receives a reward of θ, which follows a continuous and differentiable distribution F (·) with an

increasing failure rate (IFR) on [0,Θ]. For tractability, we also need F (·) to have the structural

property indicated in Assumption 1. Let us define two ancillary functions from the customer valuation

distribution F (x). Denote G(·) and g(·) as

G(x) =

∫ x

0
F̄ (t)dt∫ Θ

0
F̄ (t)dt

and g(x) = dG(x)
dx

= F̄ (x)∫ Θ

0
F̄ (t)dt

,

where x ∈ [0,Θ] and F̄ (x) = 1−F (x). Note that G(x) and g(x) can also be interpreted as a cumulative

distribution function and its probability density function, respectively. Therefore, we can also define
g(x)
Ḡ(x)

= F̄ (x)∫ Θ

x

F̄ (t)dt

as the failure rate of G(·).

Assumption 1. G(·) has an increasing failure rate (IFR), i.e., g(x)/Ḡ(x) increases in x, and its

failure rate is no less than that of F (·), i.e., g(x)/Ḡ(x) ≥ f(x)/F̄ (x) for any x ∈ [0,Θ].

Assumption 1 is relatively mild. Many distributions with IFRs in the literature (e.g., uniform,

normal, and exponential) induce G(·)’s that satisfy Assumption 1. In Sections 4.2 and 4.3, specifically

Propositions 1 and 4, Assumption 1 allows us to derive analytical pricing expressions for general

heterogeneous distributions under the sharing and nonlinear contracts.

We define the utility received by a type-θ customer as

u(d | θ) = θd − 1
2d2, (1)

where d is the demand for the goods. The quadratic term d2/2 implies a diminishing marginal value

of per-unit consumption. For example, health hazard from phone use is expected to increse with the

time a customer spends on the phone, leading to a decreasing net marginal return. We acknowledge

that a quadratic cost function might be restrictive, but it is helpful in establishing useful insights

(see, e.g., Rochet and Stole 2002 and Desai et al. 2018 for analytical modeling and Lambrecht et al.

2007 for empirical work).

Let c(d | θ) be a type-θ consumer’s total service fee paid to the provider. All customers simultane-

ously decide whether to subscribe.6 A customer’s consumption d∗(θ) maximizes the net surplus

s(d | θ) = u(d | θ) − c(d | θ) = θd − 1
2d2 − c(d | θ). (2)

Note that the total cost c(d | θ) depends on the terms of the contract and its corresponding fee

structure. Specifically, we compare two contracts: (i) a sharing contract, in which the provider charges

6 For simplicity, we assume that the customers choose to subscribe when they are indifferent.



12

ps for allowance up to Qs units, but allows subscribing customers to resell unused goods to one

another; and (ii) a nonlinear contract, in which the provider charges pn for a consumption allowance

up to Qn units and a unit overage price p̂n for any consumption in excess of the allowance. In

particular, when Qn = (>)0, the nonlinear contract is a two(three)-part tariff.

The provider offers a contract without observing the type of a consumer. Hence, she is not able to

implement perfect price discrimination. However, the provider has full information of the customer

type distribution F (·) and takes it into account when designing the optimal contract terms.

We characterize the optimal sharing and nonlinear contracts in Sections 4.2 and 4.3, respectively.

4.2. Sharing Pricing

In this subsection, we consider the sharing contract, which resembles bucket pricing by offering

heterogeneous customers a uniform contract with an allowance Qs at a price ps but differs from it by

allowing peer-to-peer resale via a sharing platform established by the service provider. We allow the

service provider to charge a unit allowance transaction fee ts from both parties of a resale. However, as

we will show later, the provider has no incentive to impose a positive ts at the optimality.7 Following

the convention in the literature of resale (e.g., Lee and Whang 2002, Yin et al. 2010), the equilibrium

sharing price, denoted as p̂s, is assumed to arise via a market clearing mechanism and the peer-to-peer

sharing market is efficient with no friction other than the potential transaction fee ts.

Let ds(θ) represent a type-θ customer’s demand. Then, we can write his total cost as

cs(ds | θ) = ps + p̂s · (ds(θ) − Qs) + ts · |ds(θ) − Qs|, (3)

which includes the payment to the service provider ps, the cost or revenue from resale, and the

transaction fee in the sharing process. Conditional on the fact that this type-θ customer subscribes

to the sharing contract, he purchases more of the goods in the sharing market if ds(θ) − Qs > 0 and

incurs a higher cost than ps. Otherwise, ds(θ) − Qs < 0 and he sells some of his allowance in the

sharing market and thus profits in the sharing resale market, which results in a lower cost than ps.

Given the cost function in (3), the surplus of a type-θ customer can be expressed as

ss(ds | θ) = u(ds | θ) − cs(ds | θ) = θds − 1
2d2

s − ps − p̂s(ds − Qs) − ts · |ds(θ) − Qs| (4)

and she solves maxds≥0 ss(ds | θ) for the optimal demand d∗
s(θ) and subscribes if ss(d∗

s | θ) ≥ 0.

To avoid the trivial case where no one is in need of extra goods, i.e., d∗
s(θ) ≤ Qs for any θ ∈ [0,Θ],

we make the following mild and plausible assumption when considering the sharing contract.

Assumption 2. The allowance Qs in the sharing contract is no more than the maximum total

demand of all customers; i.e., Qs ≤E[θ] =
∫ Θ

0
θf(θ)dθ.

7 This result still holds even if the transaction fee is unilateral, i.e., paid by either the buyer or the seller.
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In the absence of any cost, the utility function in (1) implies that a type-θ customer’s demand

equals θ. Therefore, the potential total demand from all customers is no more than
∫ Θ

0
θf(θ)dθ. It

is evident that no one needs additional allowance if Qs >

∫ Θ

0
θf(θ)dθ.

Proposition 1. If Assumption 1 holds, there exists an optimal sharing contract with ts = 0.

Proposition 1 ascertains that it is in the provider’s best interest to eliminate frictions in the sharing

market—a strictly positive transaction fee ts restrains the provider’s pricing power of setting a high

initial price ps. As the transaction fee ts diminishes, reselling becomes more seamless. On the one

hand, low-type customers could take advantage of reselling to earn a greater surplus. On the other

hand, high-type customers could purchase more of the goods and enjoy more. Since sellers and buyers

both benefit from a lower transaction fee, the service provider can improve her revenue by selling a

more expensive sharing contract in the first place. Assumption 1 implicitly ensures that raising the

sharing contract price is always more effective than imposing a transaction fee.

Proposition 1 has a significant managerial implication: the traceability of digital goods is not

essential to maneuver the impact of resales. At the optimal solution, the seller is not necessarily

taking a cut from resale and only needs to profit from sales in the primary market. In other words,

although our model assumes the peer-to-peer sharing market is curated by the seller, our results

stay intact as long as resales take place in a free market (rather than in a market managed by a

profit-maximizing third party).

Proposition 1 facilitates the characterization of the optimal sharing contract. Without loss of

generality, we restrict our attention to a frictionless sharing market and omit the transaction fee

in the rest of the paper. The next lemma characterizes customers’ subscription and consumption

decisions in this frictionless sharing market.

Lemma 1. Assume that the service provider offers a sharing contract (ps,Qs). There exists a

unique θ̄s such that customers subscribe to the service if and only if θ ≥ θ̄s. The subscriber’s demand

satisfies d∗
s(θ) = max{θ − p̂s,0}, where p̂s is the market clearing price of a unit of the good.

Lemma 1 first shows that customers’ subscription decisions retain a threshold structure: only

those who value each unit of the goods more than θ̄s subscribe. Moreover, Lemma 1 pinpoints the

dependence of each type’s optimal consumption level on the market-clearing price.

It is worth mentioning that the sharing process may enable arbitrage opportunities and speculative

resale: some customers may subscribe but not use any of the allowances and sell it all to others.

However, it is challenging to characterize explicitly when speculators may exist in equilibrium or even



14

demonstrate the existence of a resale market equilibrium. The difficulties arise from the endogeneity

and nonlinearity of the supply and the demand in the resale market with respect to the contract

parameters. To overcome the technical obstacles, we first explore the structural properties of an

equilibrium. Using these properties, we construct the candidate equilibria with and without specula-

tors and then demonstrate their validity and uniqueness. The next lemma summarizes the structural

properties of the emerging market-clearing equilibria that may or may not involve speculators.

Lemma 2. Assume that the service provider offers a sharing contract (ps,Qs). Let θ̄s represent the

cutoff so that customers of type θ ≥ θ̄s subscribe and p̂∗
s be the equilibrium market clearing price.

(i) The sharing market has an equilibrium with speculators; i.e., some subscribers resell all their

allowances at a unique market clearing price p̂∗
s ≥ 0 if and only if p̂∗

s ≥ ps/Qs and 0 ≤ θ̄s < p̂∗
s.

Moreover, p̂∗
s and θ̄s must satisfy the following equality

QsF̄ (θ̄s) + p̂∗
sF̄ (p̂∗

s) =
∫ Θ

p̂∗
s

θf(θ)dθ. (5)

(ii) The sharing market has an equilibrium without speculators; i.e., all subscribers consume some

of the allowance and there is a unique market clearing price p̂∗
s ≥ 0, if and only if 0 ≤ p̂∗

s ≤ ps/Qs

and θ̄s ≥ p̂∗
s. Moreover, p̂∗

s and θ̄s must satisfy the following equality

QsF̄ (θ̄s) + p̂∗
sF̄ (θ̄s) =

∫ Θ

θ̄s

θf(θ)dθ. (6)

Lemma 2(i) quantifies two necessary conditions for the existence of speculators, i.e., those sub-

scribing to the service but resell all their allowances. First, speculators are present only if the market-

clearing price is no less than the average unit price derived from the sharing contract, i.e., if p̂∗
s ≥

ps/Qs. Otherwise, reselling is not profitable at all for speculators. Second, the fact that speculators

do not consume any of the goods also suggests that their intrinsic valuations θ’s are less than the

per-unit payoff from reselling; i.e., θ̄s ≤ θ < p̂∗
s. Otherwise, consuming some of the goods contributes

more to their net surplus than selling them in the sharing market. In contrast, Lemma 2(ii) depicts

the complementary case that there are no speculators.

Lemma 2 shows possible equilibria under sharing but does not specify when a specific equilibrium

arises. The next proposition provides a sufficient and necessary condition for a sharing equilibrium.

Proposition 2. Assume that the service provider offers a sharing contract (ps,Qs).

(i) The sharing market has a unique equilibrium with speculators if and only if 0 ≤ Qs < Qs(ps,Qs);

(ii) The sharing market has a unique equilibrium without speculators if and only if Qs ≥ Qs(ps,Qs)

and ps/Qs + Qs/2 ≤ Θ,

where Qs(ps,Qs) =
∫ Θ

ps/Qs

θf(θ)dθ/F̄ (ps/Qs) − ps/Qs.
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Proposition 2 structurally connects a sharing contract (ps,Qs) with a possible equilibrium

via Qs(ps,Qs). We acknowledge that Qs(ps,Qs) is homogeneous of degree 0, i.e., Qs(ps,Qs) =

Qs(kps, kQs) for a scalar k. This property is profound in characterizing the optimal sharing contract.

We next show which of the two forms of equilibria, sharing with or without speculators, may yield a

higher revenue for the provider.

According to Lemma 1, customers’ subscription decisions have a threshold structure; we thus write

the provider’s revenue-maximizing problem as

max
ps,Qs

Πs(ps,Qs) = ps · F̄ (θ̄s(ps,Qs)) s.t. ps ≥ 0 and Qs ≥ 0, (7)

where θ̄s(ps,Qs) is the cutoff for customer subscriptions as identified in Lemma 1.

Proposition 3 (Optimal Sharing Contract). It is optimal to offer a sharing contract so that

there are no speculators subscribing in equilibrium. Under such an optimal sharing contract,

(i) the provider offers an allowance of Q∗
s units, where Q∗

s is the solution to∫ Θ
Qs

θf(θ)dθ

2F̄ (Qs)
= F̄ (Qs)

f(Qs)
, (8)

and charges p∗
s = Q∗2

s

2 + 1
2

(
2F̄ (Q∗

s)
f(Q∗

s) − Q∗
s

)2

;

(ii) the resulting equilibrium market clearing price p̂∗
s =

√
2p∗

s − Q∗2
s ;

(iii) customers subscribe to the service if and only if θ ≥ θ̄∗
s = Q∗

s and d∗
s(θ) = θ − p̂∗

s ≥ 0.

Proposition 3 first confirms that a sharing market with speculators is not financially desirable for

the service provider. All earnings that speculators are able to pocket are losses of revenue that the

service provider could otherwise obtain. The service provider can effectively price out speculators by

offering a large allowance and indirectly inducing an unprofitable market clearing price for specula-

tors. Specifically, let us assume that the service provider offers a sharing contract (ps,Qs) that results

in a sharing market with speculators in equilibrium. By definition, speculators do not consume any

of the goods but only resell them. Therefore, for speculators of type θ,

ss(ds = 0 | θ) = u(ds = 0 | θ) − cs(ds = 0 | θ) = p̂sQs − ps ≥ 0,

where p̂s is the market clearing price under (ps,Qs).

We now construct a sharing contract based on (ps,Qs) to induce a sharing market without spec-

ulators. Let us scale up the price and the allowance of the sharing contract simultaneously by a

multiplier of k ≥ 1. The speculators’ surplus under the new sharing contract (kps, kQs) can be written

as ss(ds = 0 | θ) = p̂′
skQs − kps, where p̂′

s is the new market-clearing price. Since the service provider

offers a larger allowance to all subscribers, this, on one hand, increases potential supplies on the shar-

ing market. On the other hand, it also reduces potential demands on the sharing market. Thus, the
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market-clearing price p̂′
s decreases as k scales up and so does ss(ds = 0 | θ) = p̂′

skQs −kps. At the point

k is large enough such that kQs ≥ Qs(kps, kQs) = Qs(ps,Qs), Proposition 2(ii) implies that specula-

tors do not exist any more. Although eliminating speculators reduces the number of subscribers, the

increased contract price is more than enough to offset the loss and it increases revenues.

The next corollary identifies buyers and sellers in the peer-to-peer sharing market.

Corollary 1. When the sharing market reaches an equilibrium, subscribers of type θ ∈ (Q∗
s +

p̂∗
s,Θ] buy extra goods from subscribers of type θ ∈ (θ̄∗

s ,Q∗
s + p̂∗

s).

4.3. Nonlinear Pricing

In this subsection, we consider the nonlinear contract. Like the bucket and sharing contracts, the

nonlinear contract also specifies a base price pn for an allowance up to Qn. In contrast to the bucket

contract, a nonlinear contract allows subscribers to go beyond the allowance at a unit overage price

p̂n. The nonlinear contract we consider is often referred to as a three-part tariff since it is defined

by three contract parameters (pn,Qn, p̂n). The most common form of nonlinear contracts, two-part

tariffs, is a special case of three-part tariffs when Qn = 0. For a given nonlinear contract (pn,Qn, p̂n),

a type-θ subscriber who uses dn units of the goods incurs a cost of

cn(dn | θ) = pn + p̂n · (dn − Qn)+.

For given pn, Qn, and p̂n, a subscriber solves the following problem

max
dn≥0

sn(dn | θ) = u(dn | θ) − cn(dn | θ) = θdn − 1
2d2

n − pn − p̂n(dn − Qn)+ (9)

for her optimal demand, which is summarized below.

Lemma 3. Assume that the service provider offers a nonlinear contract (pn,Qn, p̂n). If a type-θ

customer subscribes, her optimal consumption level satisfies

d∗
n(θ) =


θ, if 0 ≤ θ < Qn

Qn, if Qn ≤ θ < p̂n + Qn

θ − p̂n, otherwise.

(10)

Note that Lemma 3 characterizes customer demands only if they do subscribe to the service, but

it does not say who subscribes. Our next result identifies the subscribers.

Lemma 4. Assume that the service provider offers a nonlinear contract (pn,Qn, p̂n). A nonzero

fraction of customers subscribe if and only if pn ≤ 1
2(Θ − p̂n)2 + p̂nQn. Specifically, there exists a

unique θ̄n such that customers subscribe to the service if and only if θ ≥ θ̄n, where

θ̄n =


√

2pn, if 0 ≤ pn < Q2
n/2

pn/Qn + Qn/2, if Q2
n/2 ≤ pn < p̂nQn + Q2

n/2
p̂n +

√
2(pn − p̂nQn), if p̂nQn + Q2

n/2 ≤ pn ≤ 1
2(Θ − p̂n)2 + p̂nQn.

(11)
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By Lemma 4, we can write the provider’s revenue-maximizing problem as follows

max
pn,Qn,p̂n

Πn(pn,Qn, p̂n) = pnF̄ (θ̄n) + p̂n

∫ Θ

max{θ̄n,p̂n+Qn}
[(θ − p̂n) − Qn]f(θ)dθ (12)

s.t. pn ≥ 0, Qn ≥ 0, and p̂n ≥ 0,

where θ̄n represents the fraction of customers who subscribe to the service as identified in (11).

The first term pnF̄ (θ̄n) of Πn(pn,Qn, p̂n) accounts for the revenue from service subscriptions and

the second term p̂n

∫
[(θ − p̂n) − Qn]dF (θ) captures the provider’s revenue from overage surcharges.

The lower limit max{θ̄n, p̂n + Qn} of the integration specifies the subscribers who use more than the

allowance Qn units. If θ̄n ≤ p̂n + Qn, by (10) only those of θ ≥ p̂n + Qn pay for overage; otherwise, all

subscribers consume no less than the allowance.

It is difficult to derive a closed-form solution to the revenue-maximization problem in (12). Both

Fibich et al. (2017) and Bhargava and Gangwar (2018) show that the revenue surface is highly non-

linear and non-differentiable with potentially multiple local optima. Fibich et al. (2017) characterize

the closed-form solutions for markets with homogeneous customers or only two types. Bhargava and

Gangwar (2018) propose a reformulation for a general case of heterogeneous customers and apply

it to obtain analytical solutions when the heterogeneity follows some specific distributions. We take

a constructive approach by imposing Assumption 1—a slightly more restrictive condition than that

in Bhargava and Gangwar 2018 and employing the duality theory. Our approach first identifies the

only possible interval in which the optimal solution can lie. We then eliminate the possibility that

this optimality occurs at an interior point of the interval and thus confine the optimal solution to the

boundary. We next explicitly characterize the solution to (12) for general customer heterogeneity.

Proposition 4 (Optimal Nonlinear Contract). Suppose that Assumption 1 holds. Under the

optimal nonlinear contract,

(i) customers subscribe to the service if and only if her type θ ≥ θ̄∗
n, where θ̄∗

n is the solution to∫ Θ

θ̄n

θf(θ)dθ

2F̄ (θ̄n)
= F̄ (θ̄n)

f(θ̄n)
;

(ii) the optimal price p∗
n and the optimal allowance Q∗

n are all solutions to
(θ̄∗

n − p̂∗
n)2

2 = pn − p̂∗
nQn s.t. p∗

n ≥ 0 and 0 ≤ Q∗
n ≤ θ̄∗

n − p̂∗
n, (13)

where p̂∗
n =

∫ Θ

θ̄∗
n

θf(θ)dθ/F̄ (θ̄∗
n) − θ̄∗

n is the optimal overage rate.

As with the sharing contract, the subscription decision under the nonlinear contract also follows a

threshold structure.
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Although the overage rate p̂∗
n is unique, there are multiple optimal base prices p∗

n’s and allowances

Q∗
n’s as defined in (13). Moreover, it is easy to find a solution to (13) with Q∗

n = 0. This particular

solution is in fact a two-part tariff, where p∗
n is the base price and p̂∗

n is the marginal price. This result

resonates with the finding in Bhargava and Gangwar (2018), which provides a general condition

under which three-part tariffs yield the same revenue as two-part ones. Although a more restrictive

condition, i.e., Assumption 1, is imposed to establish our result, the condition allows us to derive a

sharper expression for general heterogeneous distributions.

An important property of the optimal nonlinear contract is that the service provider offers a

relatively small allowance Q∗
n such that all subscribers consume more than the contracted allowance

and pay the overage surcharge.

Corollary 2. Under the optimal nonlinear contract, θ∗
n ≥ p̂∗

n + Q∗
n and all subscribers consume

more than the allowance Q∗
n, i.e., d∗

n(θ) = θ − p̂∗
n ≥ Q∗

n for θ ∈ [θ̄∗
n,Θ].

Intuitively, a small allowance implies a relatively low base price p∗
n, which makes the service more

affordable and helps to increase the market coverage. The provider is compensated by selling extra

goods to subscribers in need and achieves second-degree price discrimination: subscribers who demand

more pay lower average unit prices. Obviously, the implementation of price discrimination allows the

provider to be able to better serve customers’ heterogeneous demands.

5. Comparing Sharing and Nonlinear Contracts
We characterize the optimal terms of the sharing contract and the nonlinear contract in Section 4.

In this section, we will compare these two contracts in market coverage, customer consumption, and

provider revenue.8

5.1. Equivalence of Sharing and Nonlinear Contracts

It may seem that the sharing contract is not as effective as the nonlinear contract because its uniform

terms prevent it from using direct price discrimination. Moreover, the sharing contract does not allow

the peer-to-peer sharing process to be controlled either. However, we will show that despite these

unfavorable features, the sharing contract performs just as well as a price discriminatory nonlinear

contract: both contracts attract the same number of subscribers, lead to the same individual surplus,

and result in the same provider revenue. Despite its uniformity to all subscribers, the sharing contract

in fact is a method of price discrimination with a resale market. Theorem 1 states the equivalence

from the perspective of the service provider.

8 We also compare the sharing and nonlinear contracts with the bucket contract in EC1.2. The main conclusion is
that both are more effective in managing heterogeneous demands than the bucket contract as the bucket contract
charges a uniform price for the same allowance to all customers.
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Theorem 1 (Revenue Equivalence of Sharing and Nonlinear Contracts). Comparing the

optimal sharing and nonlinear contracts, we find that

(i) both yield the same revenue for the provider, i.e., Πs(p∗
s,Q∗

s) = Πn(p∗
n,Q∗

n, p̂∗
n);

(ii) both result in the same market coverage, i.e., θ̄∗
s = θ̄∗

n.

In order to explain the revenue equivalence of the two contracts, we illustrate how an equivalent

sharing contract can be constructed from an optimal nonlinear contract (p∗
n,Q∗

n, p̂∗
n). The seemingly

desirable feature of the nonlinear contract is the capability of allowing heterogeneous customers

to consume different amounts of goods according to their types. Although the uniformity of the

sharing contract makes it impossible to directly distinguish among customers of various potential

demands, peer-to-peer resale offers an alternative: subscribers who do not need all their allowances

have opportunities to resell their unused quota to those who need them. Yet, it is still tricky since the

provider cannot directly intervene in subscribers’ peer-to-peer resale and she also has little control

over the market-clearing price and the customers’ demands.

Nevertheless, we argue that a meticulously chosen allowance in the sharing contract has the same

discriminatory function as the optimal nonlinear contract. Specifically, the provider should set the

sharing contract’s allowance so that the total provision of the goods under the contract equals the

total supply of the goods under the optimal nonlinear contract. Mathematically, this means

QsF̄ (θ̄s)︸ ︷︷ ︸
total supply under sharing contract

=

supply via allowance︷ ︸︸ ︷
Q∗

nF̄ (θ̄∗
n) +

supply via overage︷ ︸︸ ︷∫ Θ

θ̄∗
n

[d∗
n(θ) − Q∗

n]+ dF (θ)︸ ︷︷ ︸
total supply under nonlinear contract

,

which can be further written as

QsF̄ (θ̄s) = Q∗
nF̄ (θ̄∗

n) +
∫ Θ

θ̄∗
n

[(θ − p̂∗
n) − Q∗

n]dF (θ) (14)

since Corollary 2 shows that d∗
n(θ) = θ − p̂∗

n ≥ Q∗
n for θ ∈ [θ̄∗

n,Θ]. To facilitate our discussion, let

us for now assume that the two contracts induce an equal market coverage, i.e., θ̄s = θ̄∗
n = θ̄. This

assumption does not necessarily hold. However, we will demonstrate its validity at the end of this

section. Under the equal market coverage assumption, (14) can be written as

Qs = Q∗
n +

∫ Θ

θ̄

[(θ − p̂∗
n) − Q∗

n]dF (θ)
/

F̄ (θ̄). (15)

Eq. (15) has several important implications. The first and also intuitive one is that an equivalent

sharing contract has to offer a larger allowance than its counterpart under the optimal nonlinear

contract; i.e., Qs ≥ Q∗
n.

Second, (15) implies that the market-clearing price p̂s equals the per-unit overage rate p̂∗
n under the

optimal nonlinear contract. To see this, we need to establish a one-to-one correspondence between
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the market-clearing price p̂s and the sharing contract allowance Qs. It can be shown that there is

no speculator in the peer-to-peer trading process if the sharing contract attempts to replicate the

performance of the optimal nonlinear contract.

Hence, by Lemma 1, d∗
s(θ) = θ − p̂s ≥ 0 for any θ ≥ θ̄.9 Since the total allowance provision equals

the total consumption under the sharing contract, we have

QsF̄ (θ̄) =
∫ Θ

θ̄

(θ − p̂s)dF (θ) =
∫ Θ

θ̄

θdF (θ) − p̂sF̄ (θ̄), (16)

which evidently shows a one-to-one correspondence between Qs and p̂s. Such a correspondence sug-

gests that the allowance Qs is an instrument for manipulating the market clearing price p̂s. The choice

of Qs thus plays a role in distinguishing heterogeneous subscribers in their consumption decisions

d∗
s(θ)’s—even if it appears to be irrelevant. We further notice that the effectiveness of making use of

the allowance Qs for consumption control is identical to that of the overage rate p̂∗
n in the nonlinear

contract. This can be seen from the following supply-demand equality of the nonlinear contract,

Q∗
nF̄ (θ̄) +

∫ Θ

θ̄

[(θ − p̂∗
n) − Q∗

n]dF (θ)︸ ︷︷ ︸
total supply under nonlinear contract

=
∫ Θ

θ̄

(θ − p̂∗
n)dF (θ)︸ ︷︷ ︸

total demand under nonlinear contract

=
∫ Θ

θ̄

θdF (θ) − p̂∗
nF̄ (θ̄). (17)

Together with (15) and (16), (17) indicates p̂s = p̂∗
n. Consequently, we claim

d∗
s(θ) = θ − p̂s = θ − p̂∗

n = d∗
n(θ), (18)

which reveals that the market clearing price p̂s has the same discriminatory effect on subscribers’

demands as the nonlinear contract’s overage rate p̂∗
n and so does the allowance Qs.

Last but not least, (15) reveals that the extra allowance Qs − Q∗
n equals the average overage

consumption of all nonlinear contract subscribers. Therefore, if the provider intends to obtain the

same revenue through the sharing contract, she has to compensate herself for the revenue loss from

the provision of these additional Qs − Q∗
n units of allowance, which costs a subscriber p̂∗

n(Qs − Q∗
n)

under the nonlinear contract. In other words, if the provider sets the sharing contract’s price at

ps = p∗
n + p̂∗

n(Qs − Q∗
n), then

Πs(ps,Qs)
(7)
= ps · F̄ (θ̄)

= (p∗
n + p̂∗

n(Qs − Q∗
n))F̄ (θ̄)

(14)
= p∗

nF̄ (θ̄) + p̂∗
n

∫ Θ

θ̄

[(θ − p̂∗
n) − Q∗

n]dF (θ)
(12)
= Πn(p∗

n,Q∗
n, p̂∗

n),

i.e., she collects the same revenue as she would have under the optimal nonlinear contract.

9 The equality occurs only at θ = θ̄.
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Conversely, a nonlinear contract can be constructed to replicate an optimal sharing contract. The

revenue equivalence of the two respective contracts is thus established as presented in Theorem 1(i).

Moreover, Proposition 5 summarizes the quantitative connections of the two contracts’ parameters,

which we have elaborated on above.

Proposition 5. Comparing the optimal sharing and nonlinear contracts, we have that

(i) p∗
s > p∗

n and Q∗
s > Q∗

n;

(ii) p̂∗
s = p̂∗

n and p∗
s = p∗

n + p̂∗
s(Q∗

s − Q∗
n);

(iii) p̂∗
n ≤ p∗

s/Q∗
s ≤ p∗

n/Q∗
n.

We note that p̂∗
s = p̂∗

n in Proposition 5ii may be reminiscent of the well-known equivalence of carbon

tax and cap-and-trade. However, we would like to emphasize that the two equivalences arise from

different fundamental mechanisms.

To neutralize emissions in a carbon market, it must be that the price of pollution equals the

cost of emission abatement in equilibrium. Since both tradable emission permits and carbon taxes

can be considered as the price of pollution, they then must both equal to the emission abatement

marginal cost. Hence, the carbon market literature concludes that the market-clearing price of per-ton

carbon emission is the same as the carbon tax rate (e.g., Anand and Giraud-Carrier 2020, Requate

2006). However, in our paper, there does not exist such an “abatement marginal cost” to connect

the market-clearing price and the marginal rate. Instead, the equivalence in our paper relies on

introducing a new contract instrument—the allowance—and adjusting the contract price. Moreover,

price discrimination does not exist in carbon taxing.

Not only does the equivalence of the sharing contract and the nonlinear contract hold from the

perspective of the provider, but it also extends to subscribers. We present the result as follows.

Theorem 2 (Equivalence to Subscribers). Under the optimal sharing and nonlinear con-

tracts, subscribers of the same type

(i) consume the same amount of goods, i.e., d∗
s(θ) = d∗

n(θ) for θ ≥ θ̄∗
s = θ̄∗

n;

(ii) receive the same surplus, i.e., ss(d∗
s(θ) | θ) = sn(d∗

n(θ) | θ) for θ ≥ θ̄∗
s = θ̄∗

n.

The equivalence to subscribers also results from the allowance choice principle in (15) and the cor-

responding base price adjustment rule in Proposition 5(ii). Both collectively ensure that subscribers

of the same type consume the same amount of goods and, moreover, pay the same effective costs

under the respective contracts. As a result, for a type-θ subscriber,

ss(d∗
s | θ) = θd∗

s − (d∗
s)2/2 − p∗

s − p̂∗
s(d∗

s − Q∗
s)
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= θd∗
n − (d∗

n)2/2 − p∗
n − p̂∗

n(Q∗
s − Q∗

n) − p̂∗
s(d∗

n − Q∗
s)

= θd∗
n − (d∗

n)2/2 − p∗
n − p̂∗

n(d∗
n − Q∗

n)

= sn(d∗
n | θ),

where the second equality is due to d∗
s = d∗

n and p∗
s = p∗

n + p̂∗
n(Q∗

s − Q∗
n) and the third equality results

from p̂∗
s = p̂∗

n. And last, since customers of the same type receive the same individual surplus under

both contracts, the two contracts must also result in the same market coverage.

Our equivalence result provides convincing evidence that the seemingly non-discriminatory sharing

contact is indeed a form of price discrimination—high-consumption customers pay lower average unit

prices. However, we also acknowledge that the performance equivalence to nonlinear pricing only

holds when reselling is frictionless. As shown in Proposition 1, the service provider has no intention

of inducing market frictions in the sharing process. Yet, there might be exogenous frictions, such

as hassle costs associated with reselling. In this case, sharing pricing would underperform nonlinear

pricing. Nevertheless, such exogenous frictions tend to be negligible for digital goods when resale

could be achieved by several taps on customers’ mobile devices.

Despite the theoretical equivalence, sharing pricing and nonlinear pricing have their own edges in

practice. Conventional nonlinear pricing schemes, such as two- and three-part tariffs, typically rely

on the marginal rate to differentiate customers based on their demands. This approach is appropriate

when a customer’s actual consumption can be accurately measured, such as mobile data usage. Thus,

nonlinear pricing may be advantageous to sharing pricing due to the additional infrastructure cost

of a trading platform. This is consistent with the CMHK’s fade-away of its user trading platform.

However, it can be challenging for many digital goods to have a consensus on the user’s consumption.

Consider cloud file hosting services, where individual storage space usage may vary significantly as

users add or remove files. In such cases, adopting a two-part tariff may lead to ambiguity in defining

actual usage—whether it’s the maximum used space within a given time period, the average used

space, or the space used at a specific time each month. This ambiguity arises because customer usage

in cloud storage services may increase or decrease in a defined period of time, whereas the usage of

other digital goods such as mobile data only increases. In light of this, sharing pricing emerges as

an effective approach to profit from heterogeneous customers, particularly when their consumption

levels may fluctuate either upward or downward in the measuring time frame, such as cloud storage

services. This provides a theoretical explanation of Livedrive’s long-lasting commitment to its resell

program since 2010.



23

5.2. Generalization of the Equivalence

The key insight thus far is that reselling can function as a form of price discrimination when allowance

is utilized as a contract instrument. The effectiveness of this approach to price discrimination can

be comparable to nonlinear pricing due to the direct correspondence between the allowance and the

marginal price of a nonlinear contract. We next reassure this insight by exploring two extensions of

the base model in Section 4. Specifically, Section 5.2.1 confirms the equivalence for menu of contracts,

while Section 5.2.2 demonstrates that the equivalence holds for uncertain demand.

5.2.1. Menu of Contracts. The equivalence of sharing pricing and nonlinear pricing extends

to menu of contracts. Consider the same consumer population as specified in Section 4.1. Instead of

offering a single-iter contract, the service provider offers a K-tier menu10 of contracts for subscription.

Specifically, let {pnk
,Qnk

, p̂nk
}, k = 1,2 . . . ,K, represent a K-tier menu of nonlinear contracts, where

subscribers of tier k pay pnk
for Qnk

units of allowance and p̂nk
for each unit exceeding the allowance.

Similarly, denote {psk
,Qsk

}, k = 1,2 . . . ,K, as a K-tier menu of sharing contracts, where subscribers

of tier k pay psk
for Qsk

units of allowance.

One particular consideration of the sharing menu is to specify the scope that peer-to-peer trading

is allowed. The most restrictive scheme may only allow sharing among subscribers of the same tier

and prohibit inter-tier allowance trading. On the other extreme, the most liberal scheme may have

subscribers of all tiers to trade in the same resale market. The next lemma shows that the restrictive

scheme yields a higher revenue for the service provider.

Lemma 5. For a K-tier menu of sharing contracts, restricting trading to subscribers of the same

tier generates a higher revenue at optimality than allowing all tiers to trade in the same resale market.

If all tiers of the sharing contract menu are allowed to exchange in the same resale market, all

subscribers who need to purchase additional usage allowance pay the same market-clearing price

regardless of their types. Thus, customers have no interest in tiers with large allowances. As a result,

all subscribers purchase the same tier from the menu, which hinders the provider’s power in price

discrimination. Consequently, restricting trading to subscribers of the same tier is preferable to the

service provider. Moreover, the next result shows that restricting tradings within the same tier of

sharing contract menu is as effective as the K-tier nonlinear menu.

Theorem 3 (Equivalence of Menus). If resales are restricted to subscribers of the same tier,

the optimal K-tier sharing menu yields the same outcome as the optimal K-tier nonlinear menu.

10 The menu size K is assumed to be exogenous. Although the provider’s optimal revenue grows in K, so does the
menu administration cost. Thus, service providers usually offer small-sized menus in practice. Literature, e.g., Wilson
(1993) and Bagh and Bhargava (2013), also suggests that a small-sized menu performs closely to the optimal menu.
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Theorem 3 asserts that same-sized menus of the sharing contracts and nonlinear contracts are

equivalent: the provider earns the same revenue and customers of the same type consume the same

amount of goods for the same surplus. The pivotal building block of this equivalence originates

from Proposition 5(ii), which suggests a direct approach to constructing an outcome-equivalent tier

between the optimal menus of the sharing contracts and nonlinear contracts.

5.2.2. The Impact of Uncertainty on the Equivalence. We next examine the equivalence

of the sharing contract and the nonlinear contract under demand uncertainty, which may arise from

idiosyncratic valuation shocks.

Consider a group of mobile data subscribers who work as business consultants and value each unit

of mobile data at θ. Depending on how many hours they spend in the office and on travel, the realized

valuations θ’s may differ: availability of alternatives for Internet access in office may depreciate the

value of mobile data, whereas the same unit of data may become more valuable as the number of hours

spent on travel increases. To model these idiosyncratic shocks, we consider an additive type-specific

perturbationon the intrinsic valuation θ. Specifically, for each type-θ customer, his realized valuation

of unit usage equals θ + ϵθ, where ϵθ is a valuation perturbation drawn from a distribution Gθ(·) with

zero mean, i.e., E[ϵθ] = 0, on the support of [−ϵl
θ, ϵu

θ ] where ϵl
θ > 0 and ϵu

θ > 0. Our uncertainty model

is fairly general. Customers of various types can have distinct valuation perturbation distributions

Gθ(·)’s and these Gθ(·)’s are not required to have particular structure properties.

The idiosyncratic shocks to valuations lead to uncertain individual demands. To illustrate, let

us consider customers’ consumption decisions under the sharing contract. Assume that a type-θ

customer subscribes to the service but experiences a perturbation ϵθ. Thus, her realized surplus is

ss(ds | θ + ϵθ) = u(ds | θ + ϵθ) − cs(ds | θ + ϵθ) = (θ + ϵθ)ds − 1
2d2

s − (ps + p̂s · (ds − Qs)) . (19)

It is straightforward to see that the surplus-maximizing demand satisfies

d∗
s(θ + ϵθ) = max{θ + ϵθ − p̂s,0}. (20)

Since ϵθ is a random draw from Gθ(·), the optimal demand d∗
s(θ + ϵθ) is thus ex ante uncertain.

Consequently, whether customers subscribe to a sharing contract is determined by their expected

surplus under uncertainty. Specifically, type-θ customers subscribe if and only if

ss(ps,Qs | θ) = Eϵθ
[ss(d∗

s | θ + ϵθ)]
(20)
= P(θ + ϵθ ≥ p̂s)Eϵθ

[ss(d∗
s) | θ + ϵθ ≥ p̂s] +P(θ + ϵθ < p̂s)Eϵθ

[ss(d∗
s) | θ + ϵθ < p̂s]

= P(θ + ϵθ ≥ p̂s)Eϵθ

[
(θ + ϵθ − p̂s)2/2 − ps + p̂sQs | θ + ϵθ ≥ p̂s

]
+

P(θ + ϵθ < p̂s)Eϵθ
[−ps + p̂sQs | θ + ϵθ < p̂s]

= P(θ + ϵθ ≥ p̂s)Eϵθ

[
(θ + ϵθ − p̂s)2/2 | θ + ϵθ ≥ p̂s

]
− ps + p̂sQs (21)
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≥ 0.

We note that the customer’s expected surplus is not monotone in his (intrinsic) type θ because of the

general uncertainty framework. Specifically, it is not always true that if θ > θ′ then ss(ps,Qs | θ) >

ss(ps,Qs | θ′) or vice versa. Therefore, customers’ subscription decisions do not necessarily follow a

threshold policy as in the case without uncertainty (see Lemma 1). For exposition, we introduce

Θs(ps,Qs) := {θ | ss(ps,Qs | θ) ≥ 0} and µ(Θs(ps,Qs))

to denote the subscriber set and its probability measure under the sharing contract with uncertainty.

The provider’s revenue problem is to set the base price ps and the allowance Qs so that

max
ps,Qs

Πs(ps,Qs) = ps · µ(Θs(ps,Qs)) s.t. ps ≥ 0 and Qs ≥ 0.

In TS3, we derive corresponding customer demands, individual surplus, and the provider’s revenue

for the bucket and nonlinear contracts.

In the presence of uncertainty, the equivalence of the sharing contract and the nonlinear contract

remains to a lesser extent. We acknowledge that the optimal sharing contact yields the same revenue

as the optimal two-part tariff—a special type of nonlinear contract with zero allowance; i.e., Qn = 0.

In more general cases, we prove that when uncertainty is present, a nonlinear contract, in particular a

three-part tariff, yields no less revenue at optimality than a sharing contract, which still outperforms

a bucket contract.

Proposition 6 (Equivalence to Two-Part Tariffs under Uncertainty). Let Π∗
s and Π0∗

n be

the optimal revenues of the sharing contract and the two-part tariff, i.e., the nonlinear contract with

zero allowance, with uncertain valuations. Moreover, denote the corresponding subscriber sets as Θ∗
s

and Θ0∗
n . Then, we have (i) Π∗

s = Π0∗
n and (ii) Θ∗

s = Θ0∗
n .

The equivalence of sharing contracts and two-part tariffs in Proposition 6 resembles a similar

intuition in the deterministic case in Section 5.1. The service provider chooses the allowance to

maneuver the market clearing price indirectly to be aligned with the overage rate of the two-part

tariff. Such a market clearing price gives rise to equal consumption by customers of the same types

under both contracts for the same magnitude of uncertainty. By charging the base price of the two-

part tariff plus the surcharge for the allowance at a unit price that equals the market clearing price,

the provider effectively collects the same revenue from the sharing contract.

The equivalence of the sharing contract and the two-part tariff is preserved due to their neutrality

toward uncertainty. Under two-part tariffs, subscribers pay for what they consume. Their effective

costs are higher when they are undergoing upward shocks and lower when they are undergoing down-

ward ones. Thus, the uncertainty is expected to affect the provider’s revenue equally in both positive
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and negative ways. The sharing contract preserves this neutrality. Although the fixed allowance seems

to hinder subscribers from consuming beyond the allowance when there are upward shocks or from

saving some costs when there are downward ones, the peer-to-peer sharing helps neutralize these

variations so that the provider is equally affected by shocks in both directions on expectation. As a

result, the sharing contract and two-part tariff perform identically at optimality.

Nonetheless, the equivalence breaks down when the nonlinear contract has a nonzero allowance.

Proposition 7 (Dominance of Nonlinear Contracts under Uncertainty). Let Π∗
s and Π∗

n

denote the optimal revenues of the sharing and nonlinear contracts with uncertain valuations, respec-

tively. Then, we have Π∗
s ≤ Π∗

n.

Proposition 7 shows that the sharing contract underperforms the nonlinear contract, in particular

the three-part tariff, in the presence of uncertainty. The discrepancy results from the uneven effects

of upward and downward uncertainties on a three-part tariff. To illustrate, let us compare a three-

part tariff with a two-part one. Without an allowance, the provider who employs a two-part tariff

earns more revenues only when subscribers undergo upward shocks and consume more. In other

cases where subscribers have downward shocks and use less, the two-part tariff in fact works in favor

of subscribers by charging them only for what they consume, which results in less revenue for the

provider. In contrast, a three-part tariff can exploit uncertainties of both directions. Intuitively, in

the presence of uncertainty, customers would like to pay for some “safety allowance” to hedge against

demand shocks. The “safety allowance” certainly costs subscribers more and only justifies its value

when subscribers consume more than their expectations. If the realized uncertainty is a downward

shock that reduces a subscriber’s consumption, the “safety allowance” is useless but is already paid

for in the base price. We use Example 1 to make this argument more concrete.

Example 1. Assume that customer types follow a uniform distribution on [0,1] and moreover

that shocks happening to type-θ customers are random draws from [−θ, θ] with equal probability. The

optimal two-part tariff has the form of (p0∗
n , p̂0∗

n ) = (0.1419,0.2171) with a market coverage 1 − θ̄0∗
n =

1 − 0.6168 = 0.3832 and an optimal revenue Π0∗
s = 0.1048. The optimal three-part tariff is contracted

as (p∗
n,Q∗

n, p̂∗
n) = (0.1854,0.3129,0.2561) with a market coverage 1 − θ̄∗

n = 1 − 0.6127 = 0.3873 and an

optimal revenue Π∗
n = 0.1055. Under the optimal three-part tariff, the total allowance offered equals

(1 − θ̄∗
n)Q∗

n = 0.12119, out of which 0.0119 of a paid unit is not expected to be used. The provider

thus earns more revenue from the three-part tariff. □

Example 1 illustrates the impact of uncertainty when comparing a three-part tariff with a two-part

one. Our Proposition 4 and Bhargava and Gangwar (2018) (see Corollary 2 on p. 1523) both imply
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that if customer heterogeneity has an IFR an optimal three-part tariff yields the same revenue as an
optimal two-part tariff in the absence of uncertainty. Example 1, however, provides an example in
which an IFR does not preserve the equivalence under uncertainty due to the asymmetric impacts
of uncertainty on revenue.

6. Overage and Underage Disutility
We have so far considered risk-neutral customers. In this section, we explore how consumer psycho-
logical costs may affect the effectiveness of sharing contracts and nonlinear contracts. Specifically, we
consider consumers’ psychological response to overage or underage beyond the allowance: a customer
incurs a disutility when her consumption d either exceeds or falls short of her allowance Q. We define
the utility received by a type-θ customer as

u(d | θ) = θd − 1
2d2 − 1

2wo[(d − Q)+]2 − 1
2wu[(Q − d)+]2, (22)

where wo ≥ 0 and wu ≥ 0 are the unit overage and underage costs, respectively.
When being offered a sharing contract, a type-θ customer’s surplus can be expressed as

ss(ds | θ) = θds − 1
2d2

s − 1
2wo[(ds − Qs)+]2 − 1

2wu[(Qs − ds)+]2 − ps − p̂s(ds − Qs) (23)

and she solves maxds≥0 ss(ds | θ) for the optimal demand d∗
s(θ) and subscribes if ss(d∗

s | θ) ≥ 0.
Lemma TS6 characterizes the demand of a type-θ customer. Lemma TS7 and Proposition TS1

further develop the equilibrium of the sharing market for a given sharing contract (ps,Qs). Optimizing
over (ps,Qs), we derive the optimal sharing contract term below.

Proposition 8 (Optimal Sharing Contract). It is optimal to offer a sharing contract so that

there are no speculators subscribing in equilibrium. Under such an optimal sharing contract,

(i) the provider offers a contract (p∗
s,Q∗

s) with the resulting equilibrium market clearing price p̂∗
s,

where p∗
s, Q∗

s, and p̂∗
s are the solution to

(∫ p̂s+Qs

Qs

1
1 + wu

f(θ)dθ +
∫ Θ

p̂s+Qs

1
1 + wo

f(θ)dθ
)( F̄ (Qs)

f(Qs)
(p̂s − (1 + wu)Qs) + p̂2

s + (1 + wu)Q2
s

2
)

= p̂2
sF̄ (Qs)
1 + wu

,

QsF̄ (Qs) =
∫ p̂s+Qs

Qs

θ − p̂s + wuQs

1 + wu

f(θ)dθ +
∫ Θ

p̂s+Qs

θ − p̂s + woQs

1 + wo

f(θ)dθ,

p̂s =
√

(1 + wu)(2ps − Q2
s).

(24)
(ii) customers subscribe to the service if and only if θ ≥ θ̄∗

s = Q∗
s.

Proposition 8 generalizes Proposition 3, which can be considered as a special case of wo = wu = 0.
Similarly, when being offered a nonlinear contract (pn,Qn, p̂n), a type-θ subscriber solves the fol-

lowing problem

max
dn≥0

sn(dn | θ) = θdn − 1
2d2

n − 1
2wo[(dn − Qn)+]2 − 1

2wu[(Qn − dn)+]2 − pn − p̂n(dn − Qn)+ (25)
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for her optimal demand. Lemmas TS8 and TS9 characterize the optimal consumption level and

identifies the subscribers, respectively. Solving the revenue-maximization problem in (12). We obtain

the following optimal contract term.

Proposition 9 (Optimal Nonlinear Contract). Suppose that Assumption 1 holds. Under the

optimal nonlinear contract,

(i) customers subscribe to the service if and only if her type θ ≥ θ̄∗
n, where θ̄∗

n is the solution to

(1 + wo)2θ̄2
n −

(∫ Θ
θ̄n

θf(θ)dθ

F̄ (θ̄n) − θ̄n

)2

2
[
(1 + wo)2θ̄n −

∫ Θ
θ̄n

θf(θ)dθ

F̄ (θ̄n) + θ̄n

] = F̄ (θ̄n)
f(θ̄n)

;

(ii) the optimal price p∗
n and optimal allowance Q∗

n are

p∗
n = (θ̄∗

n − p̂∗
n)2

2 + p̂∗
n(θ̄∗

n − p̂∗
n), Q∗

n = θ̄∗
n − p̂∗

n,

where p̂∗
n =

(∫ Θ

θ̄∗
n

θf(θ)dθ/F̄ (θ̄∗
n) − θ̄∗

n

)
/(1 + wo) is the optimal overage rate.

The equivalence of the sharing contact and the nonlinear contract does not hold when subscribers

incur underage or overage disutility. Either may dominate depending on the unit overage and under-

age costs.

Theorem 4 (Comparison of Revenue). For any given unit overage cost wo, there always

exists a threshold γ > 1 such the sharing (nonlinear) contract yields weakly higher revenue than the

nonlinear (sharing) contract if wo ≥ (≤)γwu.11

Theorem 4 compares sharing and nonlinear contracts. We illustrate the result in Figure 2 using the

uniform distribution in [0,10] and exponential distribution with mean 1/λ = 2.12 Figure 2 displays

the discrepancy of the optimal revenues of the sharing and nonlinear contracts. The discrepancy

Π∗
s − Π∗

n tends to decrease in the underage rate wu but increase in the overage rate wo.

Note that Proposition 9 implies that the optimal nonlinear contract sets the allowance Q∗
n low so

that all subscribers have to pay at the marginal rate p̂∗
n to consume more than the allowance. Hence,

subscribers of a nonlinear contact do not incur underage disutility, whereas underage disutility always

occurs to some subscribers of the sharing contract and impedes the revenue the service provider can

extract. Apparently, the larger the unit underage cost wu is, the more severe the underage disutility

hurts the provider’s revenue yielded from a sharing contract. Thus, Π∗
s − Π∗

n decreases in wu.

11 The equality is only achieved at wo = γwu.
12 Lemma TS10 reveals that the revenue comparisons under uniform and exponential distributions are independent
on the distribution parameters. Thus, observations in Figure 2 also apply to any uniform or exponential distribution.
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Figure 2 Comparison of Revenue (Π∗

s − Π∗
n)

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-0.15
-0.1

-0.1

-0.05

-0.05

0

0

0.05

0.05

0.1

0.1

0.1
5

0
.1

5

0
.2

0
.2

-0.2

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0.2

(a) Uniform Distribution in [0,10]

0 0.2 0.4 0.6 0.8 1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

-0.08
-0.06

-0.04

-0.04

-0.02

-0.02
0

0

0.02

0.02

0.04

0.04

0.06

0.06
0.0

8

0.0
8

0
.1

0
.1

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

(b) Exponential Distribution with λ = 0.5
The other impact of a relatively small allowance Q∗

n of a nonlinear contract is that every subscriber

has to incur the overage disutility. As the unit overage rate wo increases, subscribers reduce their

demands and hurt the provider’s revenue yielded from a nonlinear contract. In this case, a sharing

contract can be an effective alternative: the optimal sharing contract sets the allowance Q∗
s > Q∗

n so

that some subscribers of the sharing contract can avoid the overage cost. Thus, the higher the unit

overage cost wo is, the more effective the sharing contract is. Thus, Π∗
s − Π∗

n increases in wo.

The monotonicity of Π∗
s − Π∗

n in wo and wu implies that there exists some constant γ so that the

sharing contract dominates if and only if wo ≥ γwu and vice versa.

7. Concluding Remarks
In this paper, we employ a game-theoretic model to examine how the distinctive features of digital

goods, particularly their traceability and control over usage allowance, can be leveraged to address

the cannibalization problem caused by peer-to-peer resales.

We compare the sharing pricing, under which subscribers of a specific usage allowance can trade

unused allowance, with the nonlinear pricing, e.g., a two-part tariff, which is known to be effective

in managing heterogeneous demands. We show that this non-discriminatory sharing contract which

promotes reselling is equivalent to implementing a price discrimination strategy via a two-part tariff.

Not only do the two contracts yield identical revenue, but they also achieve the same market coverage

and result in the same demand and individual surplus for customers of the same type. This equivalence

holds for menus of contracts or uncertain consumer demand.

The optimal contract terms of the sharing pricing implies that the equivalence to the nonlinear

pricing, e.g., the two-part tariff, has nothing to do with the traceability of digital goods resales in

the secondary market. Even if the seller could take a cut from all resales, she chooses not to do so

at optimality. Instead, the seller capitalizes on controlling both the usage allowance and the price to
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maximize revenue when the sharing contract is initially sold. By carefully selecting an allowance, peer-

to-peer resales under the sharing pricing reallocate uniformly distributed allowances in the contract

to customers with various demands, effectively practicing price discrimination at a market-clearing

price identical to the marginal price under nonlinear pricing. Hence, sharing pricing for digital goods

serves as an equivalent alternative to price discrimination. When nonlinear pricing is not feasible,

sharing pricing can offer a valuable alternative pricing approach.

Our paper underscores how conventional pricing theory may not be applicable to digital goods.

The unique characteristics of digital goods may introduce numerous novel pricing schemes beyond

traditional bucket pricing and provide new tools unavailable for physical goods.

Finally, it is essential to validate our theoretical framework through complementary empirical

research in the future. Transaction-level data, encompassing daily trading volume and fluctuations in

equilibrium trading prices over time, not only provides tangible evidence to validate the theoretical

constructs in this study but also offers insights to evaluate the significance of the trading market.
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E-Companion of “Digital Goods Reselling: Implications on
Cannibalization and Price Discrimination”

EC1. Bucket Contract
We present our results of the bucket contract in this section. In particular, Section EC1.1 characterizes
the optimal term of the bucket contract, Section EC1.2 and Section EC1.3 compares its performance
with the sharing and nonlinear contracts with no uncertainty and under uncertainty, respectively.

EC1.1. Bucket Pricing
We consider the bucket contract in which the provider charges each subscriber p for consumption
up to Q units.13 Therefore, there is no discrimination among customers. For example, Dropbox, a
file hosting service provider, uses this pricing scheme and offers 2TB cloud storage space at $9.99 a
month. In this simple bucket contract, usage beyond the Q-unit limit is prohibited. Hence, c(d | θ) = p

where d ≤ Q for all subscribers. A type-θ customer solves the following problem

max
0≤d≤Q

s(d | θ) = u(d | θ) − c(d | θ) = θd − 1
2d2 − p (EC.1)

to determine whether to subscribe and the consumption level d(θ) if subscribing. The next lemma
characterizes these customers’ decisions for a given bucket contract (p,Q).

Lemma EC1. Assume that the service provider offers a bucket contract (p,Q). Then,
(i) If 0 ≤ p < Q2/2, customers subscribe if and only if θ ≥ θ̄ =

√
2p and consume d∗(θ) = min{θ,Q}

units of the goods;
(ii) If Q2/2 ≤ p ≤ Q2/2 + ΘQ, customers subscribe if and only if θ ≥ θ̄ = p/Q + Q/2 and consume

d∗(θ) = Q units of the goods;
(iii) If p > Q2/2 + ΘQ, no customers subscribe.

Lemma EC1 first confirms an intuitive result: customers subscribe to the contract only when the
price is low relative to the allowance offered, i.e., cases (i) and (ii). Second, Lemma EC1 reveals
that customers’ subscription decisions follow a simple threshold structure: only those who value each
unit of the goods more than θ̄ subscribe to the service. Third, Lemma EC1 shows that the simple
non-discriminatory bucket contract is not able to satisfy customers’ heterogeneous demands. In case
(i), there will be some subscribers who would not consume all Q units and leave some unused goods.
In contrast, in both cases (i) and (ii), there are always some subscribers who have to downgrade their
usage to Q units even though they would like to consume more.

Cases (i) and (ii) in Lemma EC1 imply two potential pricing tactics for the service provider
at a given allowance. On the one hand, the provider may offer an affordable contract as in case
(i) to achieve a high market coverage with some subscribers consuming less than the allowance.

13 We use “contract” and “pricing” to refer to the terms of a service agreement and the process of determining the
terms, respectively.
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Alternatively, the provider could also charge a higher premium as in case (ii) so that all subscribers
use up all their allowances. We next characterize the optimal contract (p∗,Q∗).

Since customer subscription behavior follows a threshold structure, we formulate the provider’s
revenue-maximization problem as

max
p,Q

Π(p,Q) = p · F̄ (θ̄(p,Q)) s.t. p ≥ 0 and Q ≥ 0 (EC.2)

where F̄ (θ̄(p,Q)) represents the fraction of customers who subscribe to the service.

Proposition EC1 (Optimal Bucket Contract). Under the optimal bucket contract,
(i) the provider charges p∗ for the service, where p∗ is the solution to

F̄ (
√

2p)√
2pf(

√
2p) = 1

2 , (EC.3)

and offers at least Q∗ =
√

2p∗ units of allowance;
(ii) customers subscribe if and only if θ ≥ θ̄∗ =

√
2p∗ and their demand d∗(θ) = min{θ,Q∗}.

Proposition EC1 first shows that the optimal bucket contract has a unique price defined by (EC.3).
However, any allowance exceeding

√
2p∗ units yields the same revenue. At the price of p∗ with an

allowance of Q∗ =
√

2p∗, all subscribers earn strictly positive net surplus except type-θ̄∗ customers
whose net surplus is zero and consumption level d(θ̄∗) equals to

√
2p∗. Maintaining the price at p∗

but increasing the allowance Q∗ beyond
√

2p∗ would not induce type-θ̄∗ customers to consume more
as their demands are already fully satisfied by Q∗ =

√
2p∗ units of allowance. Therefore, type-θ̄∗

customers still earn zero net surpluses with more than Q∗ =
√

2p∗ units of allowance at price p∗ and so
do all non-subscribers. Consequently, lifting the optimal allowance beyond

√
2p∗ would not increase

the market coverage and the provider’s revenue. It, however, allows subscribers of type θ > θ̄∗ to
consume more, some of whom will also have an unused allowance, and thus improves the net surplus
of these subscribers. Moreover, among all optimal bucket contracts identified in Proposition EC1,
cases (i) and (ii) of Lemma EC1 can both occur depending on the choice of the allowance Q∗ at p∗.

EC1.2. Superiority of Sharing and Nonlinear Contracts Over Bucket Contracts
We now establish the superiority of the sharing and nonlinear contracts over the bucket contract and
discuss the pros and cons when each is implemented in practice.

All three kinds of contracts include two common parameters, the base price, and the corresponding
allowance. While the bucket contract relies only on these two parameters, the other two kinds of
contracts have other instruments: a peer-to-peer sharing market under the sharing contract and an
overage rate under the nonlinear contract. The next proposition shows that the additional instruments
benefit not only the service provider but also the customers.

Proposition EC2 (Comparisons under Fixed Base Price and Allowance). Consider a
bucket contract (p,Q), a sharing contract (ps,Qs), and a nonlinear contract (pn,Qn, p̂n ≥ 0) such that
p = ps = pn, Q = Qs = Qn. Assume that there are nonzero subscribers under all contracts. Then, we
have
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(i) the sharing and nonlinear contracts induce no less market coverage than the bucket contract,
i.e., θ̄s ≤ θ̄ and θ̄n ≤ θ̄;

(ii) the sharing and nonlinear contracts lead to no less individual surplus than the bucket contract,
i.e., ss(d∗

s(θ) | θ) ≥ s(d∗(θ) | θ) and sn(d∗
n(θ) | θ) ≥ s(d∗(θ) | θ) for any given θ ∈ [0,Θ].

(iii) the sharing and nonlinear contracts yield no less revenue than the bucket contract, i.e.,
Πs(ps,Qs) ≥ Π(p,Q) and Πn(pn,Qn, p̂n) ≥ Π(p,Q).

Proposition EC2 compares all three contracts by fixing their common parameters—the price and
the allowance. The inferiority of a bucket contract results from its inability to discriminate among
customer heterogeneous demands due to its uniformity. In contrast, nonlinear contracts implement
price discrimination by charging an overage rate. Thus customers can buy more to meet their het-
erogeneous needs, improve their surplus, and also do so at a lower average unit price. As a result,
service subscriptions grow and the provider’s revenue increases. As noted in the literature (e.g., Oi
1971, Tirole 1988, Wilson 1993), nonlinear contracts, e.g., two-part tariffs, render arbitrage opportu-
nities and thus their practical application has to prevent resale. Otherwise, the service provider may
lose revenue when certain customers buy more than they would use at low prices and then resell to
others at high prices. The bucket contract, on the other hand, eliminates the arbitrage possibility by
imposing a uniform unit price for all goods sold.

The sharing contract not only inherits the bucket contract’s immunity from arbitrage resale but
also meets customers’ heterogeneous demands more effectively via peer-to-peer sharing. On the one
hand, the sharing process allows high-demand customers to buy more of the goods from low-demand
customers. The allowance exchange re-allocates evenly distributed goods to meet customer heteroge-
neous demands, leading to a higher individual surplus. On the other hand, the possibility of selling
unused allowance essentially reduces the entry barrier of the service and makes it more affordable
to low-demand customers. Consequently, more customers subscribe and that increases the provider’s
revenue in comparison with the bucket contract.

Proposition EC2 shows the advantages of the sharing and nonlinear contracts over the bucket
contract when both have the same price and allowance. The next proposition further compares them
when each one is written with the optimal terms.

Proposition EC3 (Comparisons under Optimal Terms). Consider the optimal bucket con-
tract (p∗,Q∗), the optimal sharing contract (p∗

s,Q∗
s), and the optimal nonlinear contract (p∗

n,Q∗
n, p̂∗

n).
Then, we have

(i) the optimal sharing and nonlinear contracts induce no less market coverage than the optimal
bucket contract, i.e., θ̄∗

s ≤ θ̄∗ and θ̄∗
n ≤ θ̄∗;

(ii) the optimal sharing and nonlinear contracts yield no less revenue than the optimal bucket con-
tract, i.e., Πs(p∗

s,Q∗
s) ≥ Π(p∗,Q∗) and Πn(p∗

n,Q∗
n, p̂∗

n) ≥ Π(p∗,Q∗).



4

(iii) the optimal allowances under the sharing and nonlinear contracts are no more than that under

the optimal bucket contract, i.e., Q∗
s ≤ Q∗ and Q∗

n ≤ Q∗, but the total consumption at optimality
is no less than that under the optimal bucket contract, i.e.,

∫ Θ

θ̄∗
s

d∗
s(θ)dF (θ) ≥

∫ Θ

θ̄∗
d∗(θ)dF (θ)

and
∫ Θ

θ̄∗
n

d∗
n(θ)dF (θ) ≥

∫ Θ

θ̄∗
d∗(θ)dF (θ).

Given the result in Proposition EC2(iii), the sharing and nonlinear contracts can easily outperform
the optimal bucket contract by charging the same price and setting the same allowance. Therefore,
Proposition EC3(ii) follows readily.

As for the market coverage, Proposition EC3(i) confirms that the optimal sharing and nonlinear
contracts have an advantage over the optimal bucket contract. That finding is, however, not so
obvious, since market coverage under these optimal contracts is in general achieved at different prices
and allowances. We attribute this finding to the efficiency of the sharing and nonlinear contracts in
fulfilling heterogeneous demands. The uniformity of the bucket contract hinders the provider from
price-discriminating these heterogeneous customers. To maximize her revenue, the provider designs
the bucket contract to cater to high-valuation customers, since not only are they willing to pay more
but they also consume more. Therefore, the optimal bucket contract tends to include a relatively large
allowance at a high price, which reduces the affordability of the service and results in low market
coverage. The sharing and nonlinear contracts, in contrast, each have their own instruments for
catering to high-valuation customers with high demands. Therefore, they can offer lower allowances
at affordable prices and attract more subscribers. Despite lower allowances, both contracts induce
higher total consumption than the bucket contract thanks to their additional instruments for serving
heterogeneous demands, coupled with a larger market coverage.

EC1.3. Bucket Contract under Uncertainty

Although bucket contract is not as effective as the nonlinear contract, e.g., a two-part tariff, it is
ambiguous if this ineffectiveness still retains under demand uncertainty that is specified in Section
5.2.2. The advantage of a two-part tariff is its price-discrimination capability, whereas the disadvan-
tage is its inability to extract revenues under downward uncertainty. In contrast, a bucket contract
fails to distinguish heterogeneous customers but prospers from both upward and downward uncer-
tainties through “safety allowance.” Therefore, it is ambiguous whether two-part tariffs still perform
better than bucket pricing under uncertainty. The next result helps us solve the mystery of bucket
pricing and two-part tariffs under uncertainty.

Proposition EC4 (Bucket vs. Sharing and Nonlinear Contracts under Uncertainty).

Let Π∗, Π∗
s, and Π∗

n denote the optimal revenues of the bucket, sharing, and nonlinear contracts with

uncertain valuations, respectively. Then, we have Π∗ ≤ Π∗
s ≤ Π∗

n.
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Proposition EC4 gives a clear answer by using sharing pricing as a stepping stone. By Proposi-
tion EC4, sharing pricing outperforms bucket pricing in the presence of uncertainty. That is because
sharing contracts can always offer the same terms as bucket contracts but with peer-to-peer trading
opportunities, which would only improve the market coverage and profitability. Recalling the equiv-
alence of sharing pricing and two-part tariffs in Proposition 6, Proposition EC4 thus implies that
two-part tariffs also dominate bucket pricing even under uncertainty.

EC2. Proofs in Main Body
Proof of Proposition 2. For ease of exposition, we define g(y) =

∫ Θ
y θf(θ)dθ − yF̄ (y). Note that

g(y) strictly decreases in y ≥ 0. Hence, maxy≥0 g(y) =E[θ] at y = 0 and miny≥0 g(y) = 0 at y = Θ.
(i) Necessity. Suppose that the sharing market has an unique equilibrium with speculators. By

Lemma 2(i), we have 0 ≤ θ̄s < p̂∗
s and p̂∗

s ≥ ps/Qs. Consider two cases: θ̄s = 0 and θ̄s > 0.
If θ̄s = 0, Qs = QsF̄ (θ̄s) =

∫ Θ
p̂∗

s
θf(θ)dθ − p̂∗

sF̄ (p̂∗
s) ≤

∫ Θ
ps/Qs

θf(θ)dθ − (ps/Qs)F̄ (ps/Qs) =
QsF̄ (ps/Qs) < Qs, where the first inequality is due to g(y) strictly decreases in y ≥ 0 and p̂∗

s ≥ ps/Qs.
If θ̄s > 0, we first prove p̂∗

s = ps/Qs by contradiction. Suppose p̂∗
s > ps/Qs. For customers of type

θ < θ̄s, if they subscribe, d∗
s(θ) = max{θ − p̂∗

s,0} = 0 and ss(d∗
s(θ) | θ) = p̂∗

sQs − ps > 0, which con-
tradicts with the fact that only customers with θ ≥ θ̄s subscribe. Since 0 ≤ θ̄s < p̂∗

s, then QsF̄ (θ̄s) =∫ Θ
p̂s

θf(θ)dθ − p̂∗
sF̄ (p̂∗

s) > QsF̄ (p̂∗
s) due to the monotonicity of F̄ (·). Note p̂∗

s = ps/Qs, we have∫ Θ

p̂∗
s

θf(θ)dθ − p̂∗
sF̄ (p̂∗

s) > QsF̄ (p̂∗
s) ⇐⇒ Qs <

∫ Θ

ps/Qs

θf(θ)dθ/F̄ (ps/Qs) − ps/Qs = Qs.

Sufficiency. Suppose 0 ≤ Qs < Qs. To ensure the existence of a sharing equilibrium with speculators,
we need to show that (5) has a unique solution p̂s ≥ 0 and there exists a unique 0 ≤ θ̄s < p̂∗

s such that
ss(d∗

s(θ̄s) | θ̄s) ≥ 0, where the equality is achieved if θ̄s = 0. Let us consider two cases: (a) 0 ≤ Qs <

g(ps/Qs), and (b) g(ps/Qs) ≤ Qs < Qs.
(a) If 0 ≤ Qs ≤ g(ps/Qs), we first prove θ̄s > 0 does not occur in equilibrium. Then, we construct a

sharing with speculators equilibrium with θ̄s = 0 and show that this is the only possible equilibrium.
Suppose θ̄s > 0 in equilibrium. From the proof of necessity, we know p̂∗

s = ps/Qs if θ̄s > 0. Then,

QsF̄ (θ̄s) < Qs ≤ g(ps/Qs) = g(p̂∗
s),

which implies (5) has no solution. Hence, it is not possible to have θ̄s > 0 in equilibrium.
Next let θ̄s = 0 and we show that there exists a unique p̂∗

s > ps/Qs such that the market-clearing
condition (5) holds. Note that QsF̄ (θ̄s = 0) = Qs. Hence, we can rewrite (5) as Qs = g(p̂∗

s). Since
g(p̂s) ∈ [0,E[θ]] for p̂s ≥ 0, there must exists a p̂∗

s such that Qs = g(p̂s) has a solution for a given
0 ≤ Qs < g(ps/Qs) ≤ E[θ]. Moreover, the strict monotonicity implies that such a p̂∗

s must be unique
and p̂∗

s > ps/Qs since Qs = g(p̂∗
s) < g(ps/Qs).

At last, we show that ss(d∗
s(θ̄s) | θ̄s) > 0. Since θ̄s = 0 < ps/Qs < p̂∗

s, d∗
s(θ̄s = 0) = max{0 − p,0} = 0

By Lemma 1. Hence, ss(d∗
s(θ̄s = 0) | θ̄s = 0) = p̂∗

sQs − ps > 0 by (4).
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(b) g(ps/Qs) < Qs < Qs. We first prove that θ̄s ̸= 0 when sharing with speculators emerges in
equilibrium. Suppose θ̄s = 0. This means type-θ̄s customers do not value the service at all. They, thus,
consume nothing even though they subscribe to it. Hence, d∗

s(θ̄s) = 0 and ss(d∗
s(θ̄s) | θ̄s) = p̂∗

sQs −ps ≥

0, which implies p̂∗
s ≥ ps/Qs. Then, we have

QsF̄ (θ̄s) = Qs > g(ps/Qs) ≥ g(p̂∗
s),

which shows that (5) has no solution if θ̄s = 0.
We first construct a pair of (p̂∗

s, θ̄s) that satisfies (5) and ss(d∗
s(θ̄s) | θ̄s) = 0 simultaneously. Let

p̂∗
s = ps/Qs and we shall show that there exists a unique θ̄s > 0 such that the market clearing condition

(5) holds. To see this, rewrite (5)

QsF̄ (θ̄s) + p̂∗
sF̄ (p̂∗

s) =
∫ Θ

p̂∗
s

θf(θ)dθ ⇐⇒ QsF̄ (θ̄s) = g(p̂∗
s) = g(ps/Qs).

Since g(ps/Qs) < Qs and F̄ (θ) strictly decreases in θ, QsF̄ (θ̄s) = g(ps/Qs) holds for a unique θ̄s > 0.
We next show θ̄s < p̂∗

s = ps/Qs. Since QsF̄ (θ̄s) = g(p̂∗
s) and Qs < Qs = g(ps/Qs)/F̄ (ps/Qs),

g(p̂∗
s) = QsF̄ (θ̄s) < QsF̄ (θ̄s) = g(ps/Qs)F̄ (θ̄s)/F̄ (ps/Qs) = g(p̂∗

s)F̄ (θ̄s)/F̄ (ps/Qs), (EC.4)

where the last equality is due to p̂∗
s = ps/Qs. (EC.4) implies that F̄ (θ̄s)/F̄ (ps/Qs) = F̄ (θ̄s)/F̄ (p̂∗

s) > 1
and thus θ̄s < p̂∗

s = ps/Qs due to the strict monotonicity of F̄ (·). Since θ̄s < p̂∗
s, d∗

s(θ̄s) = max{θ̄s −

p,0} = 0 By Lemma 1. Hence, ss(d∗
s(θ̄s) | θ̄s) = p̂∗

sQs − ps = 0 by (4).
So far, we have a pair of (p̂∗

s, θ̄s) that arises as a sharing equilibrium with speculators. We next
show that this is the only sharing equilibrium with speculators. First, we show that there does not
exist other equilibrium with θ̄s > 0. Assume there is another sharing equilibrium with speculators
with θ̄′

s ̸= θ̄s > 0. From the proof of necessity, we know that for θ̄′
s > 0 the corresponding p̂∗′

s must
equal to ps/Qs. However, when we set p̂∗

s = ps/Qs in the constructive proof above, it is shown that
(EC.4) holds at a unique θ̄s > 0. Therefore, we conclude (p̂∗′

s , θ̄′
s) = (p̂∗

s, θ̄s). Second, we show that
there exists no equilibrium with θ̄s = 0. Suppose θ̄s = 0. This means type-θ̄s customers do not value
the service at all. They, thus, consume nothing even though they subscribe to it. Hence, d∗

s(θ̄s) = 0
and ss(d∗

s(θ̄s) | θ̄s) = p̂∗
sQs − ps ≥ 0, which implies p̂∗

s ≥ ps/Qs. Then, we have

QsF̄ (θ̄s) = Qs > g(ps/Qs) ≥ g(p̂∗
s),

which shows that (5) has no solution if θ̄s = 0. Thus, there is no speculating equilibrium with θ̄s = 0.
(ii) Necessity. Suppose that the sharing market has an unique equilibrium without speculators. Let

p̂∗
s ≥ 0 be the market clearing price. By Lemma 2(ii), p̂∗

s ≤ ps/Qs, which together with the market
clearing condition (6) implies

(Qs + p̂∗
s)F̄ (θ̄s) =

∫ Θ

θs

θf(θ)dθ ≤ (Qs + ps/Qs)F̄ (θ̄s) ⇐⇒ Qs ≥
∫ Θ

θ̄s

θf(θ)dθ/F̄ (θ̄s) − ps/Qs. (EC.5)

The result Qs ≥ Qs is readily available if
∫ Θ

y

θf(θ)dθ/F̄ (y) increases in y and θ̄s ≥ ps/Qs.
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To see the monotonicity of
∫ Θ

y

θf(θ)dθ/F̄ (y), consider the first derivative in y(∫ Θ

y

θf(θ)dθ/F̄ (y)
)′

=
−yf(y)F̄ (y) + f(y)

∫ Θ
y θf(θ)dθ

F̄ 2(y)
.

By the Mean Value Theorem, there exists ȳ > y such that(∫ Θ

y

θf(θ)dθ/F̄ (y)
)′

=
−yf(y)F̄ (y) + f(y)ȳ

∫ Θ
y f(θ)dθ

F̄ 2(y)
= −yf(y)F̄ (y) + ȳf(y)F̄ (y)

F̄ 2(y)
> 0. (EC.6)

To show θ̄s ≥ ps/Qs, solve 1
2(θ̄s − p̂∗

s)2 = ps − p̂∗
sQs and we have Qs + p̂∗

s = θ̄s ±
√

Q2
s − 2θ̄sQs + 2ps.

Note that (Qs + p̂∗
s)F̄ (θ̄s) =

∫ Θ
θ̄s

θf(θ)dθ implies that

Qs + p̂∗
s =

∫ Θ

θ̄s

θf(θ)dθ/F̄ (θ̄s)≥
∫ Θ

θ̄s

θ̄sf(θ)dθ/F̄ (θ̄s) =θ̄s. (EC.7)

Thus, Qs + p̂∗
s = θ̄s +

√
Q2

s − 2θ̄sQs + 2ps. Define l(θ) = θ +
√

Q2
s − 2θQs + 2ps. Then, p̂∗

s = l(θ̄s) − Qs.
Recall that θ̄s ≥ p̂∗

s by Lemma 2(ii). Therefore,

θ̄s ≥ p̂∗
s = l(θ̄s) − Qs ⇐⇒

√
Q2

s − 2θ̄sQs + 2ps ≤ Qs ⇐⇒ θ̄s ≥ ps/Qs.

We next prove ps/Qs + Qs/2 ≤ Θ by contradiction. Suppose ps/Qs + Qs/2 > Θ. Then,

l(Θ) = Θ +
√

Q2
s − 2ΘQs + 2ps > Θ +

√
Q2

s − 2Qs (ps/Qs + Qs/2) + 2ps = Θ.

Note that
∫ Θ

Θ
θf(θ)dθ/F̄ (Θ) = Θ due to the L’Hôpital’s rule. Thus, l(Θ) >

∫ Θ

Θ
θf(θ)dθ/F̄ (Θ). It

is easy to see that l(θ) decreases for θ ≥ ps/Qs and recall that
∫ Θ

y

θf(θ)dθ/F̄ (y) increases by

(EC.6). As a result, l(Θ) >

∫ Θ

Θ
θf(θ)dθ/F̄ (Θ) implies that there does not exist a solution to l(θ̄s) =∫ Θ

θ̄s

θf(θ)dθ/F̄ (θ̄s), which equivalently means that Qs + p̂∗
s =

∫ Θ

θ̄s

θf(θ)dθ/F̄ (θ̄s) has no solution by

the definition of l(θ̄s). We thus reach a contradiction.
Sufficiency. Suppose Qs ≥ Qs and ps/Qs + Qs/2 ≤ Θ. To ensure the existence of a sharing market

without speculators with a unique market clearing price, we need to show that (6) and (EC.81)
simultaneously hold with a unique set of p̂∗

s ≥ 0 and θ̄s ≥ p̂∗
s.

Since Qs ≥ Qs, we have∫ Θ

ps/Qs

θf(θ)dθ/F̄ (ps/Qs) ≤ Qs + ps/Qs = l(ps/Qs). (EC.8)

By the Mean Value Theorem, we obtain∫ Θ

ps/Qs+Qs/2
θf(θ)dθ/F̄ (ps/Qs + Qs/2) > ps/Qs + Qs/2 = l(ps/Qs + Qs/2). (EC.9)

Since l(θ) strictly decreases in θ ≥ ps/Qs and
∫ Θ

θ̄s

θf(θ)dθ/F̄ (θ̄s) increases, (EC.8) and (EC.9) implies

that there exists a unique solution ps/Qs ≤ θ̄s < ps/Qs + Qs/2 ≤ Θ such that∫ Θ

θ̄s

θf(θ)dθ/F̄ (θ̄s) = l(θ̄s). (EC.10)

Furthermore, let

p̂∗
s = l(θ̄s) − Qs = θ̄s +

√
Q2

s − 2θ̄sQs + 2ps − Qs, (EC.11)
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which uniquely defines p̂∗
s due to the uniqueness of θ̄s. Moreover, (EC.11) also suggests that

p̂∗
s = θ̄s +

√
Q2

s − 2θ̄sQs + 2ps − Qs ≤ θ̄s +
√

Q2
s − 2 (ps/Qs)Qs + 2ps − Qs = θ̄s, (EC.12)

Therefore, taking (EC.10) and (EC.11) together and rearranging, we claim that the following equa-
tions∫ Θ

θ̄s

θf(θ)dθ/F̄ (θ̄s) = p̂∗
s + Qs and p̂∗

s = θ̄s +
√

Q2
s − 2θ̄sQs + 2ps − Qs ⇒ 1

2(θ̄s − p̂∗
s)2 = ps − p̂∗

sQs,

must have a set of solution p̂∗
s and θ̄s ≥ p̂∗

s.
At last, we show p̂∗

s > 0 by contradiction. Suppose p̂∗
s ≤ 0. According to (EC.84) and (EC.85), the

discrepancy of the total supply and the demand can be written as∫ p̂∗
s+Qs

θ̄s

(Qs − θ + p̂∗
s)f(θ)dθ −

∫ Θ

p̂∗
s+Qs

(θ − Qs − p̂∗
s)f(θ)dθ

=
∫ Θ

θ̄s

Qsf(θ)dθ −
∫ Θ

θ̄s

(θ − p̂∗
s)f(θ)dθ = F̄ (θ̄s)

(
Qs −

∫ Θ
θ̄s

(θ − p̂∗
s)f(θ)dθ

F̄ (θ̄s)

)

<F̄ (θ̄s)
(

Qs −
∫ Θ

0 (θ − p̂∗
s)f(θ)dθ

F̄ (0)

)
≤ F̄ (θ̄s)

(
Qs −

∫ Θ
0 θf(θ)dθ

F̄ (0)

)
=F̄ (θ̄s) (Qs −E[θ]) ≤ 0,

where the first inequality results from
∫ Θ

y

θf(θ)dθ/F̄ (y) strictly increases in y and the last inequality
is due to Assumption 2. □

Proof of Proposition 3. Proposition 2 shows that the service provider may choose (ps,Qs) such
that either sharing with speculators or sharing without speculators takes place. We shall first show
that sharing without speculators yields no less revenue than sharing with speculators.

Consider a given sharing contract (ps,Qs) so that 0 ≤ Qs < Qs. In this case, sharing with speculators
occurs by Proposition 2(i). Consider the revenue function Πs(ps,Qs) = psF̄ (θ̄s) and note that F̄ (θ̄s) =(∫ Θ

p̂∗
s

θf(θ)dθ − p̂∗
sF̄ (p̂∗

s)
)

/Qs by (5). Thus, we write

Πs(ps,Qs) = psF̄ (θ̄s) = ps

(∫ Θ

p̂∗
s

θf(θ)dθ − p̂∗
sF̄ (p̂∗

s)
)/

Qs. (EC.13)

Recall
∫ Θ

y θf(θ)dθ−yF̄ (y) decreases in y and p̂∗
s ≥ ps/Qs by Lemma 2(i). Therefore, (EC.13) indicates

Πs(ps,Qs) ≤ (ps/Qs)
(∫ Θ

ps/Qs

θf(θ)dθ − (ps/Qs)F̄ (ps/Qs)
)

= (ps/Qs)F̄ (ps/Qs)Qs, (EC.14)

where Qs is defined in Proposition 2.
We next show that there exists a sharing contract under which sharing without speculators occurs

and the resulting revenue equals to (ps/Qs)F̄ (ps/Qs)Qs. Therefore, the maximum revenue by inducing
sharing without speculators is no less than that with speculators. In particular, consider a sharing
contract (p′

s,Q
′
s) such that p′

s/Q′
s = ps/Qs and Q′

s = Qs, where (ps,Qs) is the sharing contract in the
foregoing sharing with speculators case. Consider p′

s/Q′
s + Q′

s/2,

p′
s/Q′

s + Q′
s/2 = ps/Qs + Qs/2 = ps/Qs + Qs − Qs/2 =

∫ Θ

ps/Qs

θf(θ)dθ/F̄ (ps/Qs) − Qs/2 ≤ Θ,

where the third equality is due to the definition of Qs in Proposition 2, and the inequality is due
to
∫ Θ

ps/Qs
θf(θ)dθ/F̄ (ps/Qs) ≤ Θ and Qs/2 ≥ 0. By Proposition 2(ii), sharing without speculators
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occurs under (p′
s,Q

′
s). Denote p̂∗′

s as the market-clearing price and θ̄′
s as the subscribing threshold,

i.e., ss

(
d∗

s(θ̄′
s)|θ̄′

s

)
= 1

2

(
θ̄′

s − p̂∗′
s

)2
+ p̂∗′

s Q′
s − p′

s = 0 under (p′
s,Q

′
s). It can be shown that the market

clearing equation (6) is achieved at θ̄s = p̂∗′
s and p̂∗

s = p̂∗′
s under (p′

s,Q
′
s). Moreover, θ̄s = p̂∗′

s and
p̂∗

s = p̂∗′
s must be the only solution due to the uniqueness of the equilibrium. Thus, θ̄′

s = p̂∗′
s and

ss

(
d∗

s(θ̄′
s)|θ̄′

s

)
= p̂∗′

s Q′
s − p′

s = 0, which imply p̂∗′
s = θ̄′

s = p′
s/Q′

s. Recall p′
s/Q′

s = ps/Qs and Q′
s = Qs.

Now consider the revenue under (p′
s,Q

′
s)

Πs(p′
s,Q

′
s) = p′

sF̄ (θ̄′
s) = (p′

s/Q′
s)F̄ (p′

s/Q′
s)Q′

s = (ps/Qs)F̄ (ps/Qs)Qs. (EC.15)

Putting (EC.14) and (EC.15) together, we claim that sharing without speculators must yield a higher
revenue than with speculators.

At last, we solve for the optimal contract (p∗
s,Q∗

s). Since p∗
s ≥ 0 and Q∗

s ≥ 0, the optimal solution
is either on the boundary or a stationary point. However, Πs(ps,Qs) = 0 for ps = 0 or Qs = 0 and
Πs(ps,Qs) > 0 for ps > 0 and Qs > 0. The optimal solution must arise at a stationary point. Consider
the first-order conditions of (7)

∂Πs

∂ps

= F̄ (θ̄s) − psf(θ̄s)
∂θ̄s

∂ps

= 0

∂Πs

∂Qs

= −psf(θ̄s)
∂θ̄s

∂Qs

= 0
⇐⇒


∂θ̄s

∂ps

= F̄ (θ̄s)
psf(θ̄s)

∂θ̄s

∂Qs

= 0
, (EC.16)

which demonstrates the connection of the optimal contact with the subscribing threshold θ̄s. We thus
explore the properties of θ̄s, which arises together with the market clearing price p̂∗

s via (6)

(Qs + p̂∗
s)F̄ (θ̄s) =

∫ Θ

θ̄s

θf(θ)dθ and ss

(
d∗

s(θ̄s)|θ̄s

)
= 1

2
(
θ̄s − p̂∗

s

)2
+ p̂∗

sQs − ps = 0. (EC.17)

Writing p̂∗
s as

∫ Θ
θ̄s

θf(θ)dθ

F̄ (θ̄s) −Qs from the former equation and substituting it into the latter one, we are
able to eliminate p̂∗

s and transform (EC.17) in terms of θ̄s only(
θ̄s −

∫ Θ
θ̄s

θf(θ)dθ

F̄ (θ̄s)

)2

= 2ps + Q2
s − 2θ̄sQs, (EC.18)

or equivalently

θ̄s −
∫ Θ

θ̄s
θf(θ)dθ

F̄ (θ̄s)
= −

√
2ps + Q2

s − 2θ̄sQs (EC.19)

given that θ̄s <

∫ Θ
θ̄s

θf(θ)dθ

F̄ (θ̄s) by the Mean Value Theorem. Note that θ̄s is a function of ps and Qs. Then,
taking the first derivative of both sides of (EC.18) with respect to ps and Qs respectively, we have[

1 + f(θ̄s)
F̄ (θ̄s)

(
θ̄s −

∫ Θ
θ̄s

θf(θ)dθ

F̄ (θ̄s)

)](
θ̄s −

∫ Θ
θ̄s

θf(θ)dθ

F̄ (θ̄s)

)
∂θ̄s

∂ps

= 1 − ∂θ̄s

∂ps

Qs

and [
1 + f(θ̄s)

F̄ (θ̄s)

(
θ̄s −

∫ Θ
θ̄s

θf(θ)dθ

F̄ (θ̄s)

)](
θ̄s −

∫ Θ
θ̄s

θf(θ)dθ

F̄ (θ̄s)

)
∂θ̄s

∂Qs

= Qs − θ̄s − ∂θ̄s

∂Qs

Qs.

By (EC.19), the foregoing equations thus can be written as[
−
√

2ps + Q2
s − 2θ̄sQs + f(θ̄s)

F̄ (θ̄s)

(
2ps + Q2

s − 2θ̄sQs

)] ∂θ̄s

∂ps

= 1 − ∂θ̄s

∂ps

Qs (EC.20)
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and [
−
√

2ps + Q2
s − 2θ̄sQs + f(θ̄s)

F̄ (θ̄s)

(
2ps + Q2

s − 2θ̄sQs

)] ∂θ̄s

∂Qs

= Qs − θ̄s − ∂θ̄s

∂Qs

Qs. (EC.21)

So far, we have (EC.16) to define the optimal contract, which is denoted as (p∗
s,Q∗

s) from now on,

and eqs. (EC.20)–(EC.21) to characterize the subscribing threshold under (p∗
s,Q∗

s). We next solve

(EC.16), (EC.20), and (EC.21). Substituting (EC.16) into (EC.20) and (EC.21), we obtain

θ̄∗
s = Q∗

s and F̄ (θ̄∗
s)

f(θ̄∗
s)

= Q∗
s +

√
2p∗

s − Q∗2
s

2 ⇒ p∗
s = Q∗2

s

2 + 1
2

(
2F̄ (Q∗

s)
f(Q∗

s) − Q∗
s

)2

, (EC.22)

which demonstrates that the subscribing threshold θ̄∗
s and the optimal contract price p∗

s are uniquely

determined by the optimal allowance Q∗
s. Substitute θ̄∗

s = Q∗
s to (EC.19) and rearrange.∫ Θ

Q∗
s

θf(θ)dθ

2F̄ (Q∗
s)

=
θ̄∗

s +
√

2p∗
s + Q∗2

s − 2θ̄∗
sQ∗

s

2
by (EC.22)

= Q∗
s +

√
2p∗

s − Q∗2
s

2 = F̄ (θ̄∗
s)

f(θ̄∗
s)

= F̄ (Q∗
s)

f(Q∗
s) ,

which defines the optimal allowance Q∗
s. The market clearing price p̂∗

s =
√

2p∗
s − Q∗2

s is readily

obtained by solving ss

(
d∗

s(θ̄∗
s)|θ̄∗

s

)
= 0 in (EC.17) and replacing θ̄∗

s with Q∗
s.

Substitute θ̄∗
s = Q∗

s into 1
2(θ̄∗

s − p̂∗
s)2 + p̂∗

sQ∗
s = p∗

s, it is easy to see p̂∗
s =

√
2p∗

s − Q∗2
s . Therefore, we

know the optimal solutions in this case is that described in the Proposition 3.

At last, since θ̄∗
s ≥ p̂∗

s by Lemma 2(ii), d∗
s(θ) = θ − p̂∗

s for all subscribers according to Lemma 1. □

Proof of Proposition 4. By Lemma 4, if pn > 1
2(Θ − p̂n)2 + p̂nQn, no customers subscribe and

Π(pn,Qn, p̂n) = 0. We thus only need to consider 0 ≤ pn ≤ 1
2(Θ − p̂n)2 + p̂nQn. Specifically, we delib-

erate three cases: (a) 0 ≤ pn < Q2
n/2; (b) Q2

n/2 ≤ p < p̂nQ2
n + Q2

n/2; and (c) p̂nQ2
n + Q2

n/2 ≤ pn ≤
1
2(Θ − p̂n)2 + p̂nQn. We shall show that case (c) yields more profit than the other two cases and shall

characterize the optimal solutions from case (c).

(a) 0 ≤ pn < Q2
n/2. In this case, θ̄n =

√
2pn < Qn by (11). The revenue function in (12) and its

derivative in Qn can be written as

Πn(pn,Qn, p̂n) = pnF̄ (θ̄n) + p̂n

∫ Θ

p̂n+Qn

(θ − p̂n − Qn)f(θ)dθ and ∂Πn

∂Qn

= −p̂nF̄ (p̂n + Qn) ≤ 0.

It is obvious that Π(pn,Qn, p̂n) is decreasing in Qn for a given pn if 0 ≤ pn < Q2
n/2. Hence,

Π(pn,Qn, p̂n) < Π(pn,Qn =
√

2pn, p̂n) in this case. Therefore, the profit cannot be more than that

when 1
2Q2

n ≤ pn < p̂nQn + 1
2Q2

n, i.e., case (b).

(b) Q2
n/2 ≤ pn < p̂nQn + Q2

n/2. In this case, θ̄n = pn/Qn + Qn/2 by (11) and Qn ≤ θ̄n < p̂n + Qn.

We can rewrite the revenue function Πn(pn,Qn, p̂n) in (12) in terms of (θ̄n,Qn, p̂n) as

Πn(θ̄n,Qn, p̂n) = (θ̄nQn − 1
2Q2

n)F̄ (θ̄n) + p̂n

∫ Θ

p̂n+Qn

(θ − p̂n − Qn)f(θ)dθ.

We shall show that the maximum value of Πn(θ̄n,Qn, p̂n) must be achieved at θ̄n = p̂n + Qn. In other

words, the optimal solution must be a boundary point, which will be considered in case (c)

Assume that there is an interior solution (θ̄n,Qn, p̂n), which must satisfy the following FOCs
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∂Πn

∂θ̄n

= Qn ·
(
F̄ (θ̄n) − (θ̄n − Qn/2)f(θ̄n)

)
= 0, (EC.23)

∂Πn

∂p̂n

=
∫ Θ

p̂n+Qn

θf(θ)dθ − (2p̂n + Qn)F̄ (p̂n + Qn) = 0, (EC.24)
∂Πn

∂Qn

= (θ̄n − Qn)F̄ (θn) − p̂nF̄ (p̂n + Qn) = 0. (EC.25)

Define an auxiliary function h(x | Qn) = (x − Qn)F̄ (x) for x ≥ 0 and denote x0 as the solution to
∂h

∂x
= F̄ (x) − (x − Qn)f(x) = xf(x)

(
F̄ (x)
xf(x) −

(
1 − Qn

x

))
= 0. (EC.26)

Rewrite (EC.25) in terms of the auxiliary function h(· | Qn) as
∂Πn

∂Qn

= h(θ̄n | Qn) − h(p̂n + Qn | Qn) = 0. (EC.27)

We shall show that (EC.27) can only hold at θ̄n = p̂n + Qn in three steps:
Step 1. Prove that h(x | Qn) strictly increases in x ≤ x0 and strictly decreases in x ≥ x0;
Step 2. Show that p̂n + Qn ≤ x0;
Step 3. Show that θ̄n < x0.

Steps 2 and 3 provide a range of the interior optimal solution. And Step 1 shows that the auxiliary
function h(x | Qn) has a strict monotonicity in this range. Thus, (EC.27) can only hold at θ̄n =
p̂n + Qn, which contradicts with the assumption that (θ̄n,Qn, p̂n) is an interior optimal solution.

We next demonstrate the claims in the three steps.
Step 1. Recall that F (·) has an IFR. Then, F̄ (x)

xf(x) ∈ [0,∞) is decreasing in x. On the other hand,
1 − Qn/x ∈ (−∞,1] is strictly increasing in x. Thus, x0 be the unique solution to (EC.26). The
monotonicity of h(x | Qn) follows because

F̄ (x)
xf(x) > (<)

(
1 − Qn

x

)
iff x < (>) x0 ⇐⇒ ∂h

∂x
> (<)0 iff x < (>) x0. (EC.28)

Step 2. For convenience, define a dummy variable z = p̂n + Qn. Rewrite (EC.24) in terms of z,
∂Πn

∂p̂n

=
∫ Θ

z

θf(θ)dθ − (2z − Qn)F̄ (z)

=
∫ Θ

z

(θ − z)f(θ)dθ − (z − Qn)F̄ (z)

(integration by parts) =
∫ Θ

z

F̄ (z)dθ − (z − Qn)F̄ (z)

= zF̄ (z)
(∫ Θ

z F̄ (θ)dθ

zF̄ (z)
−
(

1 − Qn

z

))
= 0. (EC.29)

By Assumption 1,
∫ Θ

x
F̄ (x)dθ

xF̄ (x) ∈ [0,∞) is decreasing in x. Moreover, 1 − Qn/x ∈ [−∞,1) is strictly

increasing in x. Thus, z is the unique solution to (EC.29). Note that
∫ Θ

x
F̄ (θ)dθ

xF̄ (x) ≤ F̄ (x)
xf(x) by Assumption

1, thus z = p̂n + Qn ≤ x0.
Step 3. Recall that case (b) only focuses on the case that Q2

n/2 ≤ pn < p̂nQn + Q2
n/2. Thus, Qn = 0

is not valid consideration. (In fact, it is a special situation of case (c).) As a result, we have
∂Πn

∂θ̄n

= 0 ⇐⇒ F̄ (θ̄n) = (θ̄n − Qn/2)f(θ̄n) > (θ̄n − Qn)f(θ̄n) =⇒ F̄ (θ̄n)
θ̄nf(θ̄n)

> 1 − Qn

θ̄n

.
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By (EC.28), we conclude θ̄n < x0.
(c) p̂nQn + Q2

n/2 ≤ pn ≤ 1
2(Θ − p̂n)2 + p̂nQn. By (11), we have θ̄n = p̂n +

√
2(pn − p̂nQn), which is

derived from setting (EC.92) to zero so that 1
2(θ̄n − p̂n)2 = pn − p̂nQn. Rewrite the profit function

(12),

Πn(pn,Qn, p̂n) = (1
2 θ̄2

n − θ̄np̂n − 1
2 p̂2

n)F̄ (θ̄n) + p̂n

∫ Θ

θ̄n

θf(θ)dθ, (EC.30)

which only depends on θ̄n and p̂n. By the FOCs, the optimal nonlinear contract must satisfy
∂Πn

∂θ̄n

= (θ̄n − p̂n)
(

F̄ (θ̄n) − 1
2(θ̄n + p̂n)f(θ̄n)

)
= 0, (EC.31)

∂Πn

∂p̂n

=
∫ Θ

θ̄n

θf(θ)dθ − (θ̄n + p̂n)F̄ (θ̄n) = 0. (EC.32)

We consider the solutions to (EC.31) and (EC.32) for two situations: (c1) θ̄n > p̂n and (c2) θ̄n = p̂n.
(c1) If θ̄n > p̂n, the FOCs (EC.31) and (EC.32) become

F̄ (θ̄n)
f(θ̄n)

= 1
2(θ̄n + p̂n), (EC.33)∫ Θ

θ̄n
θf(θ)dθ

F̄ (θ̄n)
= θ̄n + p̂n. (EC.34)

Eliminating p̂n from (EC.33) and (EC.34), the optimal θ̄∗
n solves∫ Θ

θ̄n

θf(θ)dθ

2F̄ (θ̄n)
= F̄ (θ̄n)

f(θ̄n)
.

The optimal p̂∗
n and Q∗

n are obtained by (EC.32) and 1
2(θ̄∗

n − p̂n)2 = pn − p̂nQn in (EC.92), respectively.
(c2) If θ̄n − p̂n = 0, then pn = p̂nQn by (11). Recall that in case (c) pn ≥ p̂nQn + Q2

n/2. Thus,
pn = p̂nQn ≥ p̂nQn + Q2

n/2, which implies Qn = 0 and pn = 0. Now solve (EC.32) and integrate by
parts,

θ̄n + p̂n =
∫ Θ

θ̄n
θf(θ)dθ

F̄ (θ̄n)
⇐⇒ θ̄n = 1

2(θ̄n + p̂n) =
∫ Θ

θ̄n
θf(θ)dθ

2F̄ (θ̄n)
=
∫ Θ

θ̄n
F̄ (θ)dθ + θ̄nF̄ (θ̄n)

2F̄ (θ̄n)
, (EC.35)

Note that θ̄n =
∫ Θ

θ̄n
F̄ (θ)dθ + θ̄nF̄ (θ̄n)

2F̄ (θ̄n)
indicates

∫ Θ
θ̄n

F̄ (θ)dθ = θ̄nF̄ (θ̄n). Thus, we can rewrite (EC.35)
as

θ̄n = 1
2(θ̄n + p̂n) =

∫ Θ
θ̄n

θf(θ)dθ

2F̄ (θ̄n)
=
∫ Θ

θ̄n
F̄ (θ)dθ + θ̄nF̄ (θ̄n)

2F̄ (θ̄n)
=
∫ Θ

θ̄n
F̄ (θ)dθ

F̄ (θ̄n)
≤ F̄ (θ̄n)

f(θ̄n)
, (EC.36)

where the inequality stems from Assumption 1.
We next show that the inequality in (EC.36) has to be binding at optimality. Assume that θ̄n <

F̄ (θ̄n)
f(θ̄n) and consider the marginal profit at θ̄n + ϵ with a slight abuse of notation, where ϵ > 0 such that

F̄ (θ̄n+ϵ)
(θ̄n+ϵ)f(θ̄n+ϵ) > 1,

∂Πn

∂θ̄n

∣∣∣
θ̄n=θ̄n+ϵ

= (θ̄n − p̂n)
[
F̄ (θ̄n) − 1

2(θ̄n + p̂n)f(θ̄n)
]∣∣∣

θ̄n=θ̄n+ϵ

= ϵ
f(θ̄n + ϵ)

θ̄n + ϵ

[
F̄ (θ̄n + ϵ)

(θ̄n + ϵ)f(θ̄n + ϵ)
− 1

2(1 + p̂n

θ̄n + ϵ
)
]

> 0, (EC.37)

where the last equality and inequality are both due to θ̄n = p̂n. (EC.37) implies that in the right
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neighborhood of θ̄n there exists a θ̄n + ϵ that yields a higher profit, which contradicts with θ̄n is the
optimal solution. Therefore, the inequality of (EC.36) has to be binding and the optimal θ̄∗

n solves∫ Θ

θ̄n

θf(θ)dθ

2F̄ (θ̄n)
= F̄ (θ̄n)

f(θ̄n)
.

The optimal p̂∗
n and Q∗

n are obtained by (EC.32) and 1
2(θ̄∗

n − p̂n)2 = pn − p̂nQn in (EC.92), respectively.
□

Proof of Theorem 1. By Propositions 3 and 4, we have∫ Θ
Q∗

s
θf(θ)dθ

2F̄ (Q∗
s)

= F̄ (Q∗
s)

f(Q∗
s) and

∫ Θ
θ̄∗

n
θf(θ)dθ

2F̄ (θ̄∗
n)

= F̄ (θ̄∗
n)

f(θ̄∗
n)

,

respectively. Thus Q∗
s = θ̄∗

n. Recall that θ̄∗
s = Q∗

s from Proposition 3. Hence, θ̄∗
s = θ̄∗

n.
Now we show that p̂∗

s = p̂∗
n as presented in Proposition 5(ii). Recall from (EC.17) that the optimal

sharing contract satisfies ss

(
d∗

s(θ̄∗
s)|θ̄∗

s

)
= 1

2

(
θ̄∗

s − p̂∗
s

)2
+ p̂∗

sQ∗
s − p∗

s = 0, which can be written as
1
2(Q∗2

s + p̂∗2
s ) = p∗

s, (EC.38)

since Q∗
s = θ̄∗

n. Moreover, Proposition 3 indicates that F̄ (Q∗
s)

f(Q∗
s) = Q∗

s+
√

2p∗
s−Q∗2

s

2 , which is equivalent to
F̄ (Q∗

s)
f(Q∗

s) = Q∗
s+p̂∗

s
2 by (EC.38). Note that Proposition 4 reveals that under the optimal nonlinear contract

F̄ (θ̄∗
n)

f(θ̄∗
n) = θ̄∗

n+p̂∗
n

2 . Since Q∗
s = θ̄∗

n, then p̂∗
s = p̂∗

n.
At last, consider the optimal revenues of the two contracts. By (EC.38), we can derive the optimal

sharing contract’s revenue as

Πs(p∗
s,Q∗

s) = p∗
sF̄ (θ̄∗

s) = 1
2(Q∗2

s + p̂∗2
s )F̄ (θ̄∗

s) = 1
2(Q∗2

s + p̂∗2
s )F̄ (Q∗

s).

On the other hand, by (EC.30), the optimal nonlinear contract’s revenue can be written as

Πn(p∗
n,Q∗

n, p̂∗
n) = (1

2 θ̄∗2
n − θ̄∗

np̂∗
n − 1

2 p̂∗2
n )F̄ (θ̄∗

n) + p̂∗
n

∫ Θ

θ̄∗
n

θf(θ)dθ

= (1
2 θ̄∗2

n − θ̄∗
np̂∗

n − 1
2 p̂∗2

n )F̄ (θ̄∗
n) + p̂∗

n(p̂∗
n + θ̄∗

n)F̄ (θ̄∗
n)

= 1
2(θ̄∗2

n + p̂∗2
n )F̄ (θ̄∗

n),

where the second equality is due to
∫ Θ

θ̄∗
n

θf(θ)dθ

F̄ (θ̄∗
n) = p̂∗

n + θ̄∗
n from Proposition 4. Since Q∗

s = θ̄∗
n and

p̂∗
s = p̂∗

n, thus Πs(p∗
s,Q∗

s) = Πn(p∗
n,Q∗

n, p̂∗
n). □

Proof of Proposition 5. Note that we have already proved p̂∗
s = p̂∗

n in the proof of Theorem 1. We
now will use this equality to demonstrate other results in this proposition.

(i) By (7), the optimal sharing contract’s revenue Πs(p∗
s,Q∗

s) = p∗
sF̄ (θ̄∗

s). Using (13), we can write
the nonlinear contract’s revenue (12) at optimality as

Πn(p∗
n,Q∗

n, p̂∗
n) = p∗

nF̄ (θ̄∗
n) + p̂∗

n

∫ Θ

p̂∗
n+Q∗

n

(θ − p̂∗
n)f(θ)dθ. (EC.39)

Recall from Theorem 1 that Πs(p∗
s,Q∗

s) = Πn(p∗
n,Q∗

n, p̂∗
n). Thus, p∗

sF̄ (θ̄∗
s) > p∗

nF̄ (θ̄∗
n). Moreover, since

Theorem 1 also shows that θ̄∗
s = θ̄∗

n, we have p∗
s > p∗

n. To see Q∗
s > Q∗

n, recall that θ̄∗
n ≥ Q∗

n + p̂∗
n by

Corollary 2 and θ̄∗
s < p̂∗

s + Q∗
s by Corollary 1. Since θ̄∗

s = θ̄∗
n by Theorem 1 and p̂∗

s = p̂∗
n, then Q∗

s > Q∗
n.
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(ii) The total customer consumptions under the optimal sharing and nonlinear contracts are

Q∗
sF̄ (θ̄∗

s) and Q∗
nF̄ (θ̄∗

n) +
∫ Θ

p̂∗
n+Q∗

n

(θ − p̂∗
n)f(θ)dθ,

respectively. Since θ̄∗
s = θ̄∗

n by Theorem 1 and subscribers consume the same amount of data under
two contracts that will be shown in Theorem 2, it must be the total consumptions are the same under
sharing and nonlinear contracts i.e.,

Q∗
sF̄ (θ̄∗

s) = Q∗
nF̄ (θ̄∗

n) +
∫ Θ

p̂∗
n+Q∗

n

(θ − p̂∗
n)f(θ)dθ ⇐⇒ Q∗

sF̄ (θ̄∗
s) − Q∗

nF̄ (θ̄∗
n) =

∫ Θ

p̂∗
n+Q∗

n

(θ − p̂∗
n)f(θ)dθ.

(EC.40)
The optimal nonlinear contract’s revenue in (EC.39) thus can be written as

Πn(p∗
n,Q∗

n, p̂∗
n) = p∗

nF̄ (θ̄∗
n) + p̂∗

n

∫ Θ

p̂∗
n+Q∗

n

(θ − p̂∗
n)f(θ)dθ = p∗

nF̄ (θ̄∗
n) + p̂∗

n(Q∗
sF̄ (θ̄∗

s) − Q∗
nF̄ (θ̄∗

n)).

Since Πn(p∗
n,Q∗

n, p̂∗
n) = Πs(p∗

s,Q∗
s) = p∗

sF̄ (θ̄∗
s) and θ̄∗

s = θ̄∗
n by Theorem 1, therefore

Πs(p∗
s,Q∗

s)−Πn(p∗
n,Q∗

n, p̂∗
n) = p∗

sF̄ (θ̄∗
s)−p∗

nF̄ (θ̄∗
n)− p̂∗

n(Q∗
sF̄ (θ̄∗

s)−Q∗
nF̄ (θ̄∗

n)) = 0 ⇐⇒ p∗
s = p∗

n + p̂∗
n(Q∗

s −Q∗
n).

(iii) We prove p̂∗
n ≤ p∗

s/Q∗
s ≤ p∗

n/Q∗
n by contradiction. First, suppose p∗

s/Q∗
s > p∗

n/Q∗
n. By Proposition

4, p∗
n − p̂∗

f Q∗
n = 1

2(θ̄∗
n − p̂∗

n)2 ≥ 0. Then, p∗
s/Q∗

s > p∗
n/Q∗

n ≥ p̂∗
n. Therefore, we have

Πn(p∗
n,Q∗

n, p̂∗
n) = p∗

nF̄ (θ̄∗
n) + p̂∗

n

∫ Θ

p̂∗
n+Q∗

n

(θ − p̂∗
n)f(θ)dθ

= p∗
n

Q∗
n

Q∗
nF̄ (θ̄∗

n) + p̂∗
n

∫ Θ

p̂∗
n+Q∗

n

(θ − p̂∗
n)f(θ)dθ

<
p∗

s

Q∗
s

Q∗
nF̄ (θ̄∗

n) + p∗
s

Q∗
s

∫ Θ

p̂∗
n+Q∗

n

(θ − p̂∗
n)f(θ)dθ

= p∗
s

Q∗
s

Q∗
sF̄ (θ̄∗

s) = Πs(p∗
s,Q∗

s),

where the third equality is due to (EC.40). However, Πn(p∗
n,Q∗

n, p̂∗
n) < Πs(p∗

s,Q∗
s) contradicts with

Πn(p∗
n,Q∗

n, p̂∗
n) = Πs(p∗

s,Q∗
s) as shown in Theorem 1. Thus, p∗

s/Q∗
s ≤ p∗

n/Q∗
n.

Second, suppose p̂∗
n > p∗

s/Q∗
s. Since we have demonstrated that p∗

n/Q∗
n ≥ p∗

s/Q∗
s above, then

Πn(p∗
n,Q∗

n, p̂∗
n) = p∗

nF̄ (θ̄∗
n) + p̂∗

n

∫ Θ

p̂∗
n+Q∗

n

(θ − p̂∗
n)f(θ)dθ

= p∗
n

Q∗
n

Q∗
nF̄ (θ̄∗

n) + p̂∗
n

∫ Θ

p̂∗
n+Q∗

n

(θ − p̂∗
n)f(θ)dθ

>
p∗

s

Q∗
s

Q∗
nF̄ (θ̄∗

n) + p∗
s

Q∗
s

∫ Θ

p̂∗
n+Q∗

n

(θ − p̂∗
n)f(θ)dθ

= p∗
s

Q∗
s

Q∗
sF̄ (θ̄∗

s) = Πs(p∗
s,Q∗

s),

which contradicts with Πn(p∗
n,Q∗

n, p̂∗
n) = Πs(p∗

s,Q∗
s). □

Proof of Theorem 2. (i) For a type-θ subscriber, where θ ≥ θ̄∗
s = θ̄∗

n, Proposition 3(iii) and Corollary
2 tell us that her demands under sharing and nonlinear contracts are d∗

s(θ) = θ− p̂∗
s and d∗

n(θ) = θ− p̂∗
n,

respectively. Since p̂∗
s = p̂∗

n by Proposition 5(ii), we have d∗
s(θ) = d∗

n(θ).
(ii) Note d∗

s(θ) = θ − p̂∗
s and d∗

n(θ) = θ − p̂∗
n, according to (4) and (9), we can write the consumer

surplus under sharing and nonlinear contracts as

ss(d∗
s(θ) | θ) = 1

2(θ − p̂∗
s)2 − (p∗

s − p̂∗
sQ∗

s) = 1
2(θ − p̂∗

s)2 − 1
2(θ̄∗

s − p̂∗
s)2
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and

sn(d∗
n(θ) | θ) = 1

2(θ − p̂∗
n)2 − (p∗

n − p̂∗
nQ∗

n),

respectively. Note that 1
2(θ̄∗

n − p̂∗
n)2 = p∗

n − p̂∗
nQ∗

n by Proposition 4(ii), p̂∗
s = p̂∗

n by Proposition 5(ii),
and θ̄∗

s = θ̄∗
n by Theorem 1(ii). Therefore, ss(d∗

s(θ) | θ) = sn(d∗
n(θ) | θ). □

Proof of Theorem 3. First, let {psk
,Qsk

}, k = 1,2 . . . ,K, be the optimal menu of the sharing con-
tract. By Lemma TS4, we can focus on the case that there are no speculators under this optimal
sharing menu. Moreover, by Lemma TS3, subscribers must be divided into K consecutive intervals
[θ̄k, θ̄k+1), where k = 1,2 . . . ,K and θ̄K+1 = Θ. Now construct a K-tier menu of the nonlinear contract
such that {pnk

= psk
− p̂sk

Qsk
,Qnk

= 0, p̂nk
= p̂sk

}. Then, for any θ ∈ [θ̄k, θ̄k+1), Theorems 1 and 2
hold. Thus, the two contracts yield the same outcome.

Similarly, if {pnk
,Qnk

, p̂nk
}, k = 1,2 . . . ,K, is the optimal K-tier menu of the nonlinear contracts,

we can construct a menu of sharing contracts {psk
,Qsk

} that yield the same outcome, where psk
and

Qsk
are given by 

psk
= pnk

+ p̂nk
(Qsk

− Qnk
),

(Qsk
+ p̂∗

nk
)[F̄ (θ̄k) − F̄ (θ̄k+1)] =

∫ θ̄k+1

θ̄k

θf(θ)dθ. □

Proof of Proposition 6. We show the revenue equivalence by demonstrating Π∗
s ≤ Π0∗

n and Π∗
s ≥ Π0∗

n

hold simultaneously.
First, we prove Π∗

s ≤ Π0∗
n , where Π0∗

n represents the optimal revenue when Qn = 0. Denote (p∗
s, Q∗

s)
as the optimal sharing contract. According to the Law of Large Numbers, the market clearing price
p̂∗

s under (p∗
s, Q∗

s) is determined by
total data supply︷ ︸︸ ︷∑

θ∈Θ∗
s

Q∗
s =

total data demand︷ ︸︸ ︷∑
θ∈Θ∗

s

P(θ + ϵθ − p̂s ≥ 0)Eϵθ
[d∗

s(θ + ϵθ) | θ + ϵθ − p̂s ≥ 0]︸ ︷︷ ︸
each subscriber’s expected data demand

(EC.41a)

=
∑

θ∈Θ∗
s

P(θ + ϵθ − p̂s ≥ 0)Eϵθ
[θ + ϵθ − p̂s | θ + ϵθ − p̂s ≥ 0] , (EC.41b)

where Θ∗
s = Θs(p∗

s,Q∗
s, p̂∗

s) = {θ | ss(p∗
s,Q∗

s, p̂∗
s | θ) ≥ 0}. Next, we construct a nonlinear contract with

Qn = 0 that yields the same revenue as the optimal sharing contract (p∗
s, Q∗

s). Consider the nonlinear
contract (p′

n,Q′
n, p̂′

n) = (p∗
s − p̂∗

sQ∗
s,0, p̂∗

s) and the expected surplus of a type-θ customer subscribing
to this contract. By (TS.12),

sn(p′
n,Q′

n, p̂′
n | θ) = P(p̂′

n + Q′
n ≤ θ + ϵθ)Eϵθ

[1
2(θ + ϵθ − p̂n)2 + p̂′

nQ′
n

∣∣∣p̂′
n + Q′

n ≤ θ + ϵθ

]
− p′

n

= P(p̂′
n ≤ θ + ϵθ)Eϵθ

[1
2(θ + ϵθ − p̂′

n)2
∣∣∣p̂′

n ≤ θ + ϵθ

]
− p∗

s + p̂∗
sQ∗

s

= P(p̂∗
s ≤ θ + ϵθ)Eϵθ

[1
2(θ + ϵθ − p̂∗

s)2
∣∣∣p̂∗

s ≤ θ + ϵθ

]
− p∗

s + p̂∗
sQ∗

s

by (21)
= ss(p∗

s,Q∗
s, p̂∗

s | θ), (EC.42)

which implies that the constructed nonlinear contract (p′
n,Q′

n, p̂′
n) has the same subscribers as the

optimal sharing contract (p∗
s, Q∗

s), i.e., Θ∗
s = Θ0′

n := {θ | sn(p′
n,Q′

n, p̂′
n | θ) ≥ 0}.
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Next, we compare the revenues of these two contracts. For the sharing contract, the only revenue
comes from p∗

s that all subscribers pay. We then write Π∗
s =

∑
θ∈Θ∗

s
p∗

s. Since p′
n = p∗

s − p̂∗
sQ∗

s, then

Π∗
s =

∑
θ∈Θ∗

s

(p′
n + p̂∗

sQ∗
s) =

∑
θ∈Θ∗

s

p′
n + p̂∗

s

∑
θ∈Θ∗

s

P(θ + ϵθ − p̂s ≥ 0)Eϵθ
[θ + ϵθ − p̂s | θ + ϵθ − p̂s ≥ 0] . (EC.43)

The nonlinear contract, on the other hand, has two revenue streams: the base subscription fee p′
n and

the variable payment at a rate of p̂′
n. Since Q′

n = 0, there is no allowance and each subscriber with
a strictly positive demand has to incur a variable payment. Let Π0′

n be the revenue of the nonlinear
contract (p′

n,Q′
n, p̂′

n).

Π0′
n =

∑
Θ0′

n

p′
n + p̂′

n

∑
Θ0′

n

Eϵθ
[d∗

s(θ + ϵθ)]

by (20)
=

∑
Θ0′

n

p′
n + p̂′

n

∑
Θ0′

n

P(θ + ϵθ − p̂n ≥ 0)Eϵθ
[θ + ϵθ − p̂′

n | θ + ϵθ − p̂′
n ≥ 0] . (EC.44)

Recall that Θ∗
s = Θ0′

n and p̂∗
s = p̂′

n. Therefore, Eqs. (EC.43) and (EC.44) together implies Π∗
s = Π0′

n ≤

Π0∗
n .
Second, we prove Π∗

s ≥ Π0∗
n . Let p∗

n and p̂∗
n be the optimal base price and marginal rate of the

nonlinear contact when Qn = 0. Consider a sharing contract (p′
s,Q

′
s) where p′

s = p∗
n + p̂∗

nQ′
s. Such a

sharing contract is valid if one of its parameters, either p′
s or Q′

s, is well defined. We choose to set Q′
s.

Note that the market clearing equation in (EC.41b) holds for any subscriber set. Moreover, the total
supply in the left-hand side is only determined by Q′

s and independent from any parameter in the
right-hand side. Hence, the market clearing price p̂′

s can be controlled by varying Q′
s. In particular,

choose Q′
s so that p̂′

s = p̂∗
n. Similar to the derivations in Eqs. (EC.43) and (EC.44), we conclude that

Π0∗
n = Π′

s ≤ Π∗
s, where Π′

s represents the revenue of the sharing contract(p′
s,Q

′
s).

At last, we show Θ∗
s = Θ0∗

n . Recall that we have proved Π∗
s = Π0′

n ≤ Π0∗
n and Θ∗

s = Θ0′
n for the

nonlinear contract (p′
n,Q′

n, p̂′
n) = (p∗

s − p̂∗
sQ∗

s,0, p̂∗
s). Since Π∗

s = Π0∗
n , then Π0′

n = Π0∗
n . Therefore, non-

linear contract (p′
n,Q′

n, p̂′
n) is the optimal two-part tariff contract and has the same subscribers as

the optimal sharing contract (p∗
s, Q∗

s), i.e., Θ∗
s = Θ0∗

n . □

Proof of Theorem 4. First, we show Π∗
s is decreasing in wu. For given wu, the optimal sharing con-

tract (p∗
s,Q∗

s), the corresponding equilibrium market clearing price p̂∗
s, and the subscribing threshold

θ̄∗
s should satisfy 

(θ̄∗
s − p̂∗

s + wuQ∗
s)2

2(1 + wu) − 1
2wuQ∗2

s + p̂∗
sQ∗

s − p = 0, (EC.45)∫ Θ

p̂∗
s+Q∗

s

θ − p̂∗
s − Q∗

s

1 + wo

f(θ)dθ =
∫ p̂∗

s+Q∗
s

θ̄∗
s

p̂∗
s + Q∗

s − θ

1 + wu

f(θ)dθ, (EC.46)

where (EC.45) holds because the surplus of type-θ̄∗
s customer is zero, (EC.46) holds because demand

equals to supply in sharing market. We now show θ̄∗
s is increasing in wu for given (p∗

s,Q∗
s). We prove it

by contradiction. Suppose θ̄∗
s is decreasing in wu for given (p∗

s,Q∗
s), i.e., dθ̄∗

s
dwu

≤ 0. Taking the derivative
of both sides in (EC.45) and (EC.46) with respect to wu, we get
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( θ̄∗

s − p̂∗
s + wuQ∗

s

1 + wu

+ Q∗
s) dθ̄∗

s

dwu

− (θ̄∗
s − p̂∗

s − Q∗
s)2

(1 + wu)2 = θ̄∗
s − p̂∗

s − Q∗
s

1 + wu

dp̂∗
s

dwu

, (EC.47)

−
∫ Θ

p̂∗
s+Q∗

s

1
1 + wo

f(θ)dθ
dp̂∗

s

dwu

=
∫ p̂∗

s+Q∗
s

θ̄∗
s

(1 + wu) dp̂∗
s

dwu
+ θ − p̂∗

s − Q∗
s

(1 + wu)2 f(θ)dθ. (EC.48)

Recall p̂∗
s − wuQ∗

s ≤ θ̄∗
s < p̂∗

s + Q∗
s, together with dθ̄∗

s
dwu

≤ 0, (EC.47) implies dp̂∗
s

dwu
> 0. Then

the left side of (EC.48) is less than 0. Furthermore, (EC.47) is equivalent to ( θ̄∗
s −p̂∗

s+wuQ∗
s

1+wu
+

Q∗
s) dθ̄∗

s
dwu

= (θ̄∗
s −p̂∗

s−Q∗
s)

(1+wu)2 [(1 + wu) dp̂∗
s

dwu
+ θ̄∗

s − p̂∗
s − Q∗

s] > 0. Thus,
∫ p̂∗

s+Q∗
s

θ̄∗
s

(1+wu) dp̂∗
s

dwu
+θ−p̂∗

s−Q∗
s

(1+wu)2 f(θ)dθ ≥∫ p̂∗
s+Q∗

s

θ̄∗
s

(1+wu) dp̂∗
s

dwu
+θ̄∗

s −p̂∗
s−Q∗

s

(1+wu)2 f(θ)dθ > 0, i.e., the right side of (EC.48) is greater than 0. It is a con-
tradiction. Hence, under the same sharing contract (p∗

s,Q∗
s), if we decrease wu, more customer will

subscribe (a smaller θ̄∗
s), which leads to higher revenue. Let wu = βwo, it is easy to see the sharing

contract reduces to bucket contract if β is sufficiently large because all customers will use Qs unit
data when the underage rate wu = βwo is large enough. In other words, there is no trade-in. There-
fore, the nonlinear contract can yield higher revenue if β is sufficiently large. Next, we will show the
sharing contract can yield higher revenue than nonlinear contract when β = 1. Thus, there exists
a threshold β̄ < 1, the sharing contract yields higher revenue than nonlinear contract if and only if
wu ≤ β̄wo since the optimal revenue of nonlinear contract is independent on wu. Let γ = 1/β̄, we get
the desired results in Theorem 4.

Now we show the sharing contract can yield higher revenue than nonlinear contract when β = 1,
i.e., wu = wo. By (EC.99), (EC.101) and Q∗

n = θ̄∗
n − p̂∗

n, the optimal revenue under nonlinear contract
is

Πn(p∗
n,Q∗

n, p̂∗
n) = (1

2 θ̄∗2
n − θ̄∗

np̂∗
n − 1

2 p̂∗2
n + woθ̄∗

np̂∗
n

1 + wo

)F̄ (θ̄∗
n) + p̂∗

n

∫ Θ

θ̄∗
n

θ

1 + wo

f(θ)dθ = (1
2 θ̄∗2

n + 1
2 p̂∗2

n )F̄ (θ̄∗
n).

We construct a sharing contract (ps,Qs), where ps =
(
∫ Θ

θ̄∗
n

θf(θ)dθ/F̄ (θ̄∗
n)−θ̄∗

n)2

2(1+wo) + θ̄2∗
n
2 and Qs = θ̄∗

n. We will
show θ̄s = θ̄∗

n and market clearing price p̂∗
s =

∫ Θ
θ̄∗

n
θf(θ)dθ/F̄ (θ̄∗

n) − θ̄∗
n by the following three steps.

First, we show (θ̄s−p̂∗
s+woQs)2

2(1+wo) − 1
2woQ2

s − ps + p̂∗
sQs = 0, i.e., ss(d∗

s(θ̄s)|θ̄s) = 0. That is

(θ̄s − p̂∗
s + woQs)2

2(1 + wo) − 1
2woQ2

s − ps + p̂∗
sQs

=1
2(1 + wo)(θ̄∗2

n − p̂∗
n)2 − 1

2woθ̄∗2
n − ps + (1 + wo)p̂∗

nθ̄∗
n

=1
2(1 + wo)(θ̄∗2

n − p̂∗
n)2 − 1

2woθ̄∗2
n − 1

2(1 + wo)p̂∗2
n − 1

2 θ̄∗2
n + (1 + wo)p̂∗

nθ̄∗
n = 0,

where the first equality is due to p̂∗
s = (1 + wo)p̂∗

n =
∫ Θ

θ̄∗
n

θf(θ)dθ/F̄ (θ̄∗
n) − θ̄∗

n and θ̄s = Qs = θ̄∗
n, the sec-

ond equality is due to ps = (
∫ Θ

θ̄∗
n

θf(θ)dθ/F̄ (θ̄∗
n)− θ̄∗

n)2/[2(1+wo)]+ θ̄2∗
n /2 = (1+wo)p̂∗2

n /2+ θ̄2∗
n /2. Sec-

ond, we show (TS.19) holds for Qs = θ̄s = θ̄∗
n and p̂∗

s =
∫ Θ

θ̄∗
n

θf(θ)dθ/F̄ (θ̄∗
n)− θ̄∗

n. It is easy to see (TS.19)
reduces to QsF̄ (θ̄s) =

∫ Θ
θ̄s

(θ − p̂∗
s)f(θ)dθ when wu = wo. In other words, p̂∗

s =
∫ Θ

θ̄s
θf(θ)dθ/F̄ (θ̄s) − Qs,

which holds for Qs = θ̄s = θ̄∗
n and p̂∗

s =
∫ Θ

θ̄∗
n

θf(θ)dθ/F̄ (θ̄∗
n) − θ̄∗

n. Third, we show p̂∗
s ≤ ps/Qs + wuQs/2

and θ̄s ≥ p̂∗
s −wuQs, then the equilibrium condition in Lemma TS7(ii) is satisfied with (TS.19) holds.

We have ps/Qs + wuQs/2 − p̂∗
s = (1 + wo)p̂∗2

n /(2θ̄∗
n) + θ̄∗

n/2 + woθ̄∗
n/2 − (1 + wo)p̂∗

n = (1 + wo)(p̂∗
n −

θ̄∗
n)2/(2θ̄∗

n) ≥ 0, where the first equality is due to ps = (1 + wo)p̂∗2
n /2 + θ̄2∗

n /2, p̂∗
s = (1 + wo)p̂∗

n, Qs = θ̄∗
n
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and wu = wo. Furthermore, θ̄s − (p̂∗
s − wuQs) = (1 + wo)(θ̄∗

n − p̂∗
n) = (1 + wo)Q∗

n ≥ 0, where the first

equality is due to p̂∗
s = (1 + wo)p̂∗

n, Qs = θ̄s = θ̄∗
n and wu = wo, and the second equality is due to

Q∗
n = θ̄∗

n − p̂∗
n.

At last, we show Πs(ps,Qs) > ( 1
2 θ̄∗2

n + 1
2 p̂∗2

n )F̄ (θ̄∗
n) = Πn(p∗

n,Q∗
n, p̂∗

n). That is,

Πs(ps,Qs) = psF̄ (θ̄s) = (1
2 θ̄∗2

n + 1
2(1 + wo)p̂∗2

n )F̄ (θ̄∗
n) > (1

2 θ̄∗2
n + 1

2 p̂∗2
n )F̄ (θ̄∗

n)

where the second equality is due to ps = (1 + wo)p̂∗2
n /2 + θ̄2∗

n /2 and θ̄s = θ̄∗
n, and the inequality is due

to wo > 0. □

EC3. Other Proofs in Main Body
Proof of Proposition 1. According to Lemma TS1, customers’ subscription decisions have a thresh-

old structure; we thus write the provider’s revenue-maximizing problem as

max
ps≥0,Qs≥0,ts≥0

Πs(ps,Qs, ts) = ps · F̄ (θ̄s(ps,Qs, ts)) + ts ·
∫ Θ

θ̄s

|d∗
s(θ) − Qs|f(θ)dθ (EC.49)

where θ̄s(ps,Qs) is the cutoff for customer subscriptions as identified in Lemma TS1.

First, consider the case with speculators. By Lemma TS2(i), p̂s ≥ ps/Qs + ts. By (TS.1), we can

rewrite (EC.49) as

Πs(ps,Qs, ts) = psF̄ (θ̄s) + ts

∫ p̂s−ts

θ̄s

Qsf(θ)dθ + ts

∫ p̂s+Qs−ts

p̂s−ts

(p̂s + Qs − ts − θ)f(θ)dθ

+ ts

∫ Θ

p̂s+Qs+ts

(θ − p̂s − Qs − ts)f(θ)dθ

= psF̄ (θ̄s) + 2ts

∫ p̂s−ts

θ̄s

Qsf(θ)dθ + 2ts

∫ p̂s+Qs−ts

p̂s−ts

(p̂s + Qs − ts − θ)f(θ)dθ

≤ (p̂s − ts)QsF̄ (θ̄s) + 2ts

∫ p̂s−ts

θ̄s

Qsf(θ)dθ + 2ts

∫ p̂s+Qs−ts

p̂s−ts

(p̂s + Qs − ts − θ)f(θ)dθ,

(EC.50)
where the second equality is from the equivalence of (TS.5) and (TS.6), and (EC.50) is due to

p̂s ≥ ps/Qs + ts.

We next show that the inequality (EC.50) can hold with equality all the time, i.e., one can always

choose (ps,Qs, ts) such that p̂s = ps/Qs + ts. Let t′
s = 2ts and p̂′

s = p̂s − ts. Then, (TS.3) is equivalent

to ∫ p̂′
s

θ̄s

Qsf(θ)dθ +
∫ p̂′

s+Qs

p̂′
s

(p̂′
s + Qs − θ)f(θ)dθ =

∫ Θ

p̂′
s+Qs+t′

s

(θ − p̂′
s − Qs − t′

s)f(θ)dθ. (EC.51)

Note that for any given (Qs, t
′
s) there exists a p̂′

s defined by (EC.51). Then, by setting ps = p̂′
sQs, we

have p̂s = ps/Qs + ts, which ascertains the equality of (EC.50). Thus, we can write Πs(ps,Qs, ts) as

Πs(p̂′
s,Qs, t

′
s) = p̂′

sQsF̄ (θ̄s) + t′
s

∫ p̂′
s

θ̄s

Qsf(θ)dθ + t′
s

∫ p̂′
s+Qs

p̂′
s

(p̂′
s + Qs − θ)f(θ)dθ, (EC.52)

And we will show that the optimal profit must be achieved on the boundary.

Consider the first-order conditions of Πs(p̂′
s,Qs, t

′
s) in (EC.52)
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∂Πs

∂p̂′
s

= −(p̂′
s + t′

s)Qsf(θ̄s)
∂θ̄s

∂p̂′
s

+ QsF̄ (θ̄s) + t′
s

∫ p̂′
s+Qs

p̂′
s

f(θ)dθ = 0 (EC.53)

∂Πs

∂Qs

= −(p̂′
s + t′

s)Qsf(θ̄s)
∂θ̄s

∂Qs

+ p̂′
sF̄ (θ̄s) + t′

s

∫ p̂′
s+Qs

θ̄s

f(θ)dθ = 0 (EC.54)

∂Πs

∂t′
s

= −(p̂′
s + t′

s)Qsf(θ̄s)
∂θ̄s

∂t′
s

+
∫ Θ

p̂′
s+Qs+t′

s

(θ − p̂′
s − Qs − t′

s)f(θ)dθ = 0, (EC.55)

which connect the optimal contact with the subscribing threshold θ̄s.
To establish the result, we need an intermediate step of proving

QsF̄ (θ̄s)
∂θ̄s
p̂′

s

≥
∫ Θ

p̂′
s+Qs+t′

s
(θ − p̂′

s − Qs − t′
s)f(θ)dθ

∂θ̄s
∂t′

s

, (EC.56)

or equivalently,
QsF̄ (θ̄s)∫ Θ

p̂′
s+Qs+t′

s
(θ − p̂′

s − Qs − t′
s)f(θ)dθ

≥ ∂θ̄s

∂p̂′
s

/∂θ̄s

∂t′
s

. (EC.57)

First, let us change the form of the left-hand side of (EC.57). Consider the right-hand side of (EC.51)∫ Θ

p̂′
s+Qs+t′

s

(θ − p̂′
s − Qs − t′

s)f(θ)dθ = −
∫ Θ

p̂′
s+Qs+t′

s

(θ − p̂′
s − Qs − t′

s)dF̄ (θ)

= −(θ − p̂′
s − Qs − t′

s)F̄ (θ)|Θp̂′
s+Qs+t′

s
+
∫ Θ

p̂′
s+Qs+t′

s

F̄ (θ)dθ

=
∫ Θ

p̂′
s+Qs+t′

s

F̄ (θ)dθ (EC.58)

and the left-hand side of (EC.51)∫ p̂′
s

θ̄s

Qsf(θ)dθ +
∫ p̂′

s+Qs

p̂′
s

(p̂′
s + Qs − θ)f(θ)dθ =

∫ p̂′
s

θ̄s

Qsf(θ)dθ −
∫ p̂′

s+Qs

p̂′
s

(p̂′
s + Qs − θ)dF̄ (θ)

=
∫ p̂′

s

θ̄s

Qsf(θ)dθ − (p̂′
s + Qs − θ)F̄ (θ)

∣∣∣∣p̂′
s+Qs

p̂′
s

−
∫ p̂′

s+Qs

p̂′
s

F̄ (θ)dθ

= QsF̄ (θ̄s) −
∫ p̂′

s+Qs

p̂′
s

F̄ (θ)dθ. (EC.59)

by (EC.51, EC.58) =
∫ Θ

p̂′
s+Qs+t′

s

F̄ (θ)dθ, (EC.60)

respectively. Combining (EC.58), (EC.59), and (EC.60), we have

QsF̄ (θ̄s)∫ Θ
p̂′

s+Qs+t′
s
(θ − p̂′

s − Qs − t′
s)f(θ)dθ

=
∫ Θ

p̂′
s+Qs+t′

s
F̄ (θ)dθ +

∫ p̂′
s+Qs

p̂′
s

F̄ (θ)dθ∫ Θ
p̂′

s+Qs+t′
s
F̄ (θ)dθ

= 1 +
∫ p̂′

s+Qs

p̂′
s

F̄ (θ)dθ∫ Θ
p̂′

s+Qs+t′
s
F̄ (θ)dθ

. (EC.61)

Next, let us change the form of the right-hand side of (EC.57). Taking the first derivatives of both
sides of (EC.51) with respect to p̂′

s, Qs, t′
s respectively, we have

Qsf(θ̄s)
∂θ̄s

∂p̂′
s

=
∫ p̂′

s+Qs

θ̄s

f(θ)dθ +
∫ Θ

p̂′
s+Qs+t′

s

f(θ)dθ, (EC.62)

Qsf(θ̄s)
∂θ̄s

∂Qs

=
∫ p̂′

s+Qs

θ̄s

f(θ)dθ +
∫ Θ

p̂′
s+Qs+t′

s

f(θ)dθ +
∫ p̂′

s

θ̄s

f(θ)dθ, (EC.63)

Qsf(θ̄s)
∂θ̄s

∂t′
s

=
∫ Θ

p̂′
s+Qs+t′

s

f(θ)dθ. (EC.64)

Eqs. (EC.62) and (EC.64) indicate that

∂θ̄s

∂p̂′
s

/∂θ̄s

∂t′
s

=
∫ p̂′

s+Qs

p̂′
s

f(θ)dθ +
∫ Θ

p̂′
s+Qs+t′

s
f(θ)dθ∫ Θ

p̂′
s+Qs+t′

s
f(θ)dθ

= 1 +
∫ p̂′

s+Qs

p̂′
s

f(θ)dθ∫ Θ
p̂′

s+Qs+t′
s
f(θ)dθ

(EC.65)
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Combining (EC.61) and (EC.65), we have that

QsF̄ (θ̄s)∫ Θ
p̂′

s+Qs+t′
s
(θ − p̂′

s − Qs − t′
s)f(θ)dθ

≥ ∂θ̄s

∂p̂′
s

/∂θ̄s

∂t′
s

⇐⇒
∫ p̂′

s+Qs

p̂′
s

F̄ (θ)dθ∫ Θ
p̂′

s+Qs+t′
s
F̄ (θ)dθ

≥
∫ p̂′

s+Qs

p̂′
s

f(θ)dθ∫ Θ
p̂′

s+Qs+t′
s
f(θ)dθ

⇐⇒
∫ Θ

p̂′
s+Qs+t′

s
f(θ)dθ∫ Θ

p̂′
s+Qs+t′

s
F̄ (θ)dθ

≥
∫ p̂′

s+Qs

p̂′
s

f(θ)dθ∫ p̂′
s+Qs

p̂′
s

F̄ (θ)dθ
,

which holds because∫ Θ
p̂′

s+Qs+t′
s
f(θ)dθ∫ Θ

p̂′
s+Qs+t′

s
F̄ (θ)dθ

≥
∫ Θ

p̂′
s+Qs

f(θ)dθ∫ Θ
p̂′

s+Qs
F̄ (θ)dθ

≥
∫ Θ

p̂′
s
f(θ)dθ −

∫ Θ
p̂′

s+Qs
f(θ)dθ∫ Θ

p̂′
s
F̄ (θ)dθ −

∫ Θ
p̂′

s+Qs
F̄ (θ)dθ

=
∫ p̂′

s+Qs

p̂′
s

f(θ)dθ∫ p̂′
s+Qs

p̂′
s

F̄ (θ)dθ
,

where the first inequality is directly from Assumption 1 and the second inequality results from∫ Θ
p̂′

s+Qs
f(θ)dθ∫ Θ

p̂′
s+Qs

F̄ (θ)dθ
≥
∫ Θ

p̂′
s

f(θ)dθ∫ Θ
p̂′

s
F̄ (θ)dθ

by Assumption 1. Therefore, (EC.57) holds and so does (EC.56).

Now we are ready to show that there is no interior solutions to the first-order conditions by

contradiction. Assume the optimal solution is determined by the first order conditions. Then, (EC.53)

and (EC.55) indicate that
QsF̄ (θ̄s) + t′

s

∫ p̂′
s+Qs

p̂′
s

f(θ)dθ

∂θ̄s
∂p̂′

s

=
∫ Θ

p̂′
s+Qs+t′

s
(θ − p̂′

s − Qs − t′
s)f(θ)dθ

∂θ̄s
∂t′

s

,

which together with (EC.56) implies that t′
s = 0 for any possible solution to the first-order conditions.

Note that it is also possible that there is no solution of the first-order conditions. In that case,

optimal solutions may reside on the boundary such that at least one of p̂′
s = 0, Qs = 0 and t′

s = 0 is

true. We prove that only t′
s = 0 can hold. If p̂′

s = 0, then reselling would not be profitable at all. If

Qs = 0, then no sharing would exist since there are no supplies at all. Thus, it can only be t′
s = 0, or

equivalently, ts = 0.

Second, consider the case with no speculators. By Lemma TS2(ii), θ̄s ≥ p̂s − ts. By (TS.1) and

(TS.2), we can rewrite (EC.49) as

Πs(ps,Qs, ts) =
[1

2(θ − p̂s + ts)2 + (p̂s − ts)Qs

]
F̄ (θ̄s)

+ ts

∫ p̂s+Qs−ts

θ̄s

(p̂s + Qs − ts − θ)f(θ)dθ + ts

∫ Θ

p̂s+Qs+ts

(θ − p̂s − Qs − ts)f(θ)dθ

=
[1

2(θ − p̂s + ts)2 + (p̂s − ts)Qs

]
F̄ (θ̄s) + 2ts

∫ p̂s+Qs−ts

θ̄s

(p̂s + Qs − ts − θ)f(θ)dθ,

(EC.66)
where the last equality is due to the equivalence of (TS.7) and (TS.8). Let t′

s = 2ts and p̂′
s = p̂s − ts,

thus, we can write Πs(ps,Qs, ts) as

Πs(p̂′
s,Qs, t

′
s) =

[1
2(θ − p̂′

s)2 + p̂′
sQs

]
F̄ (θ̄s) + t′

s

∫ p̂′
s+Qs

θ̄s

(p̂′
s + Qs − θ)f(θ)dθ. (EC.67)

Moreover, (TS.4) is equivalent to∫ p̂′
s+Qs

θ̄s

(p̂′
s + Qs − θ)f(θ)dθ =

∫ Θ

p̂′
s+Qs+t′

s

(θ − p̂′
s − Qs − t′

s)f(θ)dθ. (EC.68)

And we will show that the optimal profit must be achieved on the boundary.
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Consider the first-order conditions of Πs(p̂′
s,Qs, t

′
s) in (EC.67),

∂Πs

∂p̂′
s

=
[
(θ̄s − p̂′

s)
F̄ (θ̄s)
f(θ̄s)

− (1
2(θ̄s − p̂′

s)2 + p̂′
sQs) − (p̂′

s + Qs − θ̄s)f ′
]
f(θ̄s)

∂θ̄s

∂p̂′
s

+ (−θ̄s + p̂′
s + Qs)F̄ (θ̄s) + t′

s

∫ p̂′
s+Qs

θ̄s

f(θ)dθ = 0,

(EC.69)

∂Πs

∂Qs

=
[
(θ̄s − p̂′

s)
F̄ (θ̄s)
f(θ̄s)

− (1
2(θ̄s − p̂′

s)2 + p̂′
sQs) − (p̂′

s + Qs − θ̄s)t′
s

]
f(θ̄s)

∂θ̄s

∂Qs

+ p̂′
sF̄ (θ̄s) + t′

s

∫ p̂′
s+Qs

θ̄s

f(θ)dθ = 0,

(EC.70)

∂Πs

∂t′
s

=
[
(θ̄s − p̂′

s)
F̄ (θ̄s)
f(θ̄s)

− (1
2(θ̄s − p̂′

s)2 + p̂′
sQs) − (p̂′

s + Qs − θ̄s)t′
s

]
f(θ̄s)

∂θ̄s

∂t′
s

+
∫ p̂′

s+Qs

θ̄s

(p̂′
s + Qs − θ)f(θ)dθ = 0,

(EC.71)

which connect the optimal contact with the subscribing threshold θ̄s.

To establish the result, we need an intermediate step of proving

p̂′
sF̄ (θ̄s)

∂θ̄s
∂Qs

≥
∫ p̂′

s+Qs

θ̄s
(p̂′

s + Qs − θ)f(θ)dθ

∂θ̄s
∂t′

s

, (EC.72)

or equivalently,
p̂′

sF̄ (θ̄s)∫ p̂′
s+Qs

θ̄s
(p̂′

s + Qs − θ)f(θ)dθ
≥ ∂θ̄s

∂Qs

/∂θ̄s

∂t′
s

. (EC.73)

First, let us change the form of the left-hand side of (EC.73). One one hand,∫ p̂′
s+Qs

θ̄s

(p̂′
s + Qs − θ)f(θ)dθ = −

∫ p̂′
s+Qs

θ̄s

(p̂′
s + Qs − θ)dF̄ (θ)

= −(p̂′
s + Qs − θ)F̄ (θ)|p̂

′
s+Qs

θ̄s
−
∫ p̂′

s+Qs

θ̄s

F̄ (θ)dθ

= p̂′
sF̄ (θ̄s) −

∫ p̂′
s+Qs

θ̄s

F̄ (θ)dθ. (EC.74)

On the other hand,∫ p̂′
s+Qs

θ̄s

(p̂′
s + Qs − θ)f(θ)dθ

(EC.68)
=

∫ Θ

p̂′
s+Qs+t′

s

(θ − p̂′
s − Qs − t′

s)f(θ)dθ

= −
∫ Θ

p̂′
s+Qs+t′

s

(θ − p̂′
s − Qs − t′

s)dF̄ (θ)

= −(θ − p̂′
s − Qs − t′

s)F̄ (θ)|Θp̂′
s+Qs+t′

s
+
∫ Θ

p̂′
s+Qs+t′

s

F̄ (θ)dθ

=
∫ Θ

p̂′
s+Qs+t′

s

F̄ (θ)dθ. (EC.75)

Combining (EC.74), (EC.75), we have

p̂′
sF̄ (θ̄s)∫ p̂′

s+Qs

θ̄s
(p̂′

s + Qs − θ)f(θ)dθ
=
∫ p̂′

s+Qs

θ̄s
F̄ (θ)dθ +

∫ Θ
p̂′

s+Qs+t′
s
F̄ (θ)dθ∫ Θ

p̂′
s+Qs+t′

s
F̄ (θ)dθ

= 1 +
∫ p̂′

s+Qs

θ̄s
F̄ (θ)dθ∫ Θ

p̂′
s+Qs+t′

s
F̄ (θ)dθ

. (EC.76)

Next, let us change the form of the right-hand side of (EC.73). Taking the first derivatives of both

sides of (EC.68) with respect to p̂′
s, Qs, t′

s respectively, we have
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(p̂′
s + Qs − θ̄s)f(θ̄s)

∂θ̄s

∂p̂′
s

=
∫ p̂′

s+Qs

θ̄s

f(θ)dθ +
∫ Θ

p̂′
s+Qs+t′

s

f(θ)dθ, (EC.77)

(p̂′
s + Qs − θ̄s)f(θ̄s)

∂θ̄s

∂Qs

=
∫ p̂′

s+Qs

θ̄s

f(θ)dθ +
∫ Θ

p̂′
s+Qs+t′

s

f(θ)dθ, (EC.78)

(p̂′
s + Qs − θ̄s)f(θ̄s)

∂θ̄s

∂t′
s

=
∫ Θ

p̂′
s+Qs+t′

s

f(θ)dθ. (EC.79)

Eqs. (EC.78) and (EC.79) indicate that

∂θ̄s

∂Qs

/∂θ̄s

∂t′
s

=
∫ p̂′

s+Qs

θ̄s
f(θ)dθ +

∫ Θ
p̂′

s+Qs+t′
s
f(θ)dθ∫ Θ

p̂′
s+Qs+t′

s
f(θ)dθ

= 1 +
∫ p̂′

s+Qs

θ̄s
f(θ)dθ∫ Θ

p̂′
s+Qs+t′

s
f(θ)dθ

. (EC.80)

Combining (EC.76) and (EC.80), we have that

p̂′
sF̄ (θ̄s)∫ p̂′

s+Qs

θ̄s
(p̂′

s + Qs − θ)f(θ)dθ
≥ ∂θ̄s

∂Qs

/∂θ̄s

∂t′
s

⇐⇒
∫ p̂′

s+Qs

p̂′
s

F̄ (θ)dθ∫ Θ
p̂′

s+Qs+t′
s
F̄ (θ)dθ

≥
∫ p̂′

s+Qs

p̂′
s

f(θ)dθ∫ Θ
p̂′

s+Qs+t′
s
f(θ)dθ

⇐⇒
∫ Θ

p̂′
s+Qs+t′

s
f(θ)dθ∫ Θ

p̂′
s+Qs+t′

s
F̄ (θ)dθ

≥
∫ p̂′

s+Qs

p̂′
s

f(θ)dθ∫ p̂′
s+Qs

p̂′
s

F̄ (θ)dθ
,

which holds because∫ Θ
p̂′

s+Qs+t′
s
f(θ)dθ∫ Θ

p̂′
s+Qs+t′

s
F̄ (θ)dθ

≥
∫ Θ

p̂′
s+Qs

f(θ)dθ∫ Θ
p̂′

s+Qs
F̄ (θ)dθ

≥
∫ Θ

p̂′
s
f(θ)dθ −

∫ Θ
p̂′

s+Qs
f(θ)dθ∫ Θ

p̂′
s
F̄ (θ)dθ −

∫ Θ
p̂′

s+Qs
F̄ (θ)dθ

=
∫ p̂′

s+Qs

p̂′
s

f(θ)dθ∫ p̂′
s+Qs

p̂′
s

F̄ (θ)dθ
,

where the first inequality is directly from Assumption 1 and the second inequality results from∫ Θ
p̂′

s+Qs
f(θ)dθ∫ Θ

p̂′
s+Qs

F̄ (θ)dθ
≥
∫ Θ

p̂′
s

f(θ)dθ∫ Θ
p̂′

s
F̄ (θ)dθ

by Assumption 1. Therefore, (EC.73) holds and so does (EC.72).

Now we are ready to show that there is no interior solutions to the first-order conditions by

contradiction. Assume the optimal solution is determined by the first order conditions. Then, (EC.70)

and (EC.71) indicate that
p̂′

sF̄ (θ̄s) + t′
s

∫ p̂′
s+Qs

θ̄s
f(θ)dθ

∂θ̄s
∂Qs

=
∫ p̂′

s+Qs

θ̄s
(p̂′

s + Qs − θ)f(θ)dθ

∂θ̄s
∂t′

s

,

which together with (EC.72) implies that t′
s = 0 for any possible solution to the first-order conditions.

Note that it is also possible that there is no solution of the first-order conditions. In that case,

optimal solutions may reside on the boundary such that at least one of p̂′
s = 0, Qs = 0 and t′

s = 0 is

true. We prove that only t′
s = 0 can hold. If p̂′

s = 0, then reselling would not be profitable at all. If

Qs = 0, then no sharing would exist since there are no supplies at all. Thus, it can only be t′
s = 0, or

equivalently, ts = 0. □

Proof of Lemma 1. If a customer decides to subscribe to the service, i.e., ss(ds | θ) ≥ 0, we can

derive her marginal utility change ∂ss
∂ds

= θ −ds − p̂s. First, there must be a unique optimal d∗
s because

the marginal utility change is monotone in ds. Moreover, since ds ≥ 0, we have that if θ < p̂s, then
∂ss
∂ds

< 0 and d∗
s = 0; Otherwise, ss(ds | θ) is maximized at d∗

s(θ) = θ − p̂s. By (4),

d∗
s(θ) =

{
θ − p̂s, if θ ≥ p̂s

0, otherwise
and ss (d∗

s(θ) | θ) =
{

1
2 (θ − p̂s)2 + p̂sQs − ps, if θ ≥ p̂s

p̂sQs − ps, otherwise,
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which shows that ss(d∗
s(θ) | θ) strictly increases in θ. Hence, there exists a unique θ̄s ≥ 0 such that

ss(d∗
s(θ) | θ) ≥ 0 if and only if θ ≥ θ̄s. In particular, let θ̄s ≥ 0 be the solution to

ss (d∗
s(θ)|θ) = 1

2 (θ − p̂s)2 + p̂sQs − ps = 0. (EC.81)

We claim that customers subscribe to the service if and only if θ ≥ θ̄s. □

Proof of Lemma 2. (i) By Lemma 1, d∗
s(θ) = max{θ− p̂∗

s,0}. For speculators who does not consume
any data, d∗

s(θ) = max{θ − p̂∗
s,0} = 0, which occurs if and only if θ̄s < p̂∗

s. For these speculators, the
fact that they subscribe to the service indicates that ss(d∗

s(θ) | θ) = p̂∗
sQs − ps ≥ 0. Thus, p̂∗

s ≥ ps/Qs.
In this case, the total supply and demand of the sharing market are∫ p̂∗

s+Qs

θ̄s

[Qs − d∗
s(θ)]f(θ)dθ =

∫ p̂∗
s

θ̄s

Qsf(θ)dθ +
∫ p̂∗

s+Qs

p̂∗
s

(Qs − (θ − p̂∗
s))f(θ)dθ (EC.82)

and ∫ Θ

p̂∗
s+Qs

(d∗
s(θ) − Qs)f(θ)dθ =

∫ Θ

p̂∗
s+Qs

((θ − p̂∗
s) − Qs)f(θ)dθ, (EC.83)

respectively. Equating (EC.82) and (EC.83) to attain the market clearing condition, we obtain (5).
(ii) By Lemma 1, d∗

s(θ) = max{θ− p̂∗
s,0}. The fact that there are no speculators means that d∗

s(θ) =
θ − p̂∗

s for all subscribers, which occurs if and only if θ̄s ≥ p̂∗
s. For these subscribers, ss(d∗

s(θ) | θ) ≥ 0.
In particular, for the subscriber of type θ̄s,

ss(d∗
s(θ̄s) | θ̄s) = 1

2(θ̄s − p̂∗
s)2 − p∗

s + p̂∗
sQs = 0 or equivalently 1

2(θ̄s − p̂∗
s)2 = ps − p̂∗

sQs ≥ 0.

Thus, p̂∗
s ≤ ps/Qs. In this case, the total supply and demand of the sharing market are∫ p̂∗

s+Qs

θ̄s

(Qs − d∗
s(θ))f(θ)dθ =

∫ p̂∗
s+Qs

θ̄s

(Qs − (θ − p̂∗
s))f(θ)dθ (EC.84)

and ∫ Θ

p̂∗
s+Qs

(d∗
s(θ) − Qs)f(θ)dθ =

∫ Θ

p̂∗
s+Qs

((θ − p̂∗
s) − Qs)f(θ)dθ, (EC.85)

respectively. Equating (EC.84) and (EC.85) to attain the market clearing condition, we obtain (6).
□

Proof of Corollary 1. By Lemma 1, the demand of subscribers of type θ is d∗
s(θ) = max{θ − p̂∗

s,0}.
Therefore, subscribers will buy θ − p̂∗

s −Q∗
s units in the sharing market if and only if d∗

s(θ) = max{θ −
p̂∗

s,0} > Q∗
s, i.e., θ > Q∗

s + p̂∗
s. By Lemma 2, customers subscribe to the service if and only if θ ≥ θ̄∗

s ,
thus subscribers of type θ ∈ (θ̄∗

s ,Q∗
s + p̂∗

s) will sell data in the sharing market. □

Proof of Lemma 3. We can write sn(dn | θ) in (9) as

sn(dn | θ) =

− 1
2d2

n + θdn − pn, if dn < Qn

− 1
2d2

n + (θ − p̂n)dn + p̂nQn − pn, if dn ≥ Qn.

Note that sn(dn | θ) is concave in dn when dn < Qn and dn ≥ Qn, respectively. Then, conditional on
the fact that a customer has already subscribed to the service, i.e., sn(dn | θ) ≥ 0, we can derive her
demand by the first order condition (FOC). Hence,

∂sn

∂dn

=
{

θ − dn = 0, if dn < Qn (EC.86)
θ − dn − p̂n = 0, if dn ≥ Qn (EC.87) ⇐⇒ d∗

n =
{

θ, if dn < Qn (EC.88)
θ − p̂n, if dn ≥ Qn. (EC.89)



24

We next write d∗
n as function of customer type θ. First, if θ < Qn, it is easy to see that d∗

n(θ) = θ

by (EC.88). Second, if θ ≥ p̂n + Qn, then by (EC.89) we have d∗
n(θ) = θ − p̂n ≥ Qn. At last, we show

that d∗
n(θ) = Qn if Qn ≤ θ < p̂n + Qn:

(i) Assume a type-θ customer consumes dn < Qn. By (EC.86), ∂sn
∂dn

= θ − dn ≥ Qn − dn > 0, then the
customer prefers increasing her demand to Qn, i.e., d∗

n(θ) = Qn.
(ii) Assume a type-θ customer consumes dn ≥ Qn. By (EC.87), ∂sn

∂dn
= θ − dn − p̂n < p̂n + Qn − dn −

p̂n = Qn − dn ≤ 0, then the customer prefers decreasing her demand to Qn, i.e., d∗
n(θ) = Qn. □

Proof of Lemma 4. By Lemma 3, we can write sn(dn | θ) in (9) as

sn(d∗
n(θ) | θ) =



1
2θ2 − pn, if 0 ≤ θ < Qn (EC.90)

θQn − 1
2Q2

n − pn, if Qn ≤ θ < p̂n + Qn (EC.91)
1
2(θ − p̂n)2 − (pn − p̂nQn), if p̂n + Qn ≤ θ ≤ Θ. (EC.92)

If pn > 1
2(Θ − p̂n)2 + p̂nQn, sn(d∗

n(θ = Θ) | θ = Θ) < 0. Since sn(d∗
n(θ) | θ) strictly increases in θ, no

customers earn positive surplus and hence there are no subscribers. On the contrary, if 0 ≤ pn ≤
1
2(Θ − p̂n)2 + p̂nQn, sn(d∗

n(θ = 0) | θ = 0) ≤ 0 and sn(d∗
n(θ = Θ) | θ = Θ) ≥ 0. Therefore, there exists a

unique θ̄n such that sn(d∗
n(θ) | θ) = 0 and customers subscribe to the service if and only if θ ≥ θ̄n.

Next, we characterize θ̄n. First, let us consider the case 0 ≤ pn < Q2
n/2. For any customer of type

θ ∈ [Qn, p̂n + Qn), sn(d∗
n(θ) | θ) = θQn − 1

2Q2
n − pn > θQn − Q2

n ≥ 0 by eq. (EC.91). For any customer
of type θ ∈ [p̂n + Qn,Θ], sn(d∗

n(θ) | θ) = 1
2(θ − p̂n)2 − (pn − p̂nQn) ≥ Q2

n/2 + p̂nQn − pn > 0 by eq.
(EC.92). In other words, all customers of types θ ∈ [Qn,Θ] choose to subscribe. Thus, the continuity
of sn implies θ̄n < Qn: setting sn(d∗

n(θ) | θ) in eq. (EC.90) to be zero, we have θ̄n =
√

2pn.
Second, consider Q2

n/2 ≤ pn < p̂nQn + Q2
n/2. For any customer of type θ ∈ [0,Qn), sn(d∗

n(θ) | θ) =
1
2θ2 − pn ≤ 1

2θ2 − 1
2Q2

n < 0 by eq. (EC.90). In other words, no customers of types θ ∈ [0,Qn) choose
to subscribe. For any customer of type θ ∈ [p̂n + Qn,Θ], sn(d∗

n(θ) | θ) = 1
2(θ − p̂n)2 − (pn − p̂nQn) ≥

1
2Q2

n − (pn − p̂nQn) > 0 by eq. (EC.92). In other words, all customers of types θ ∈ [p̂n + Qn,Θ] choose
to subscribe. Thus, the continuity of sn implies Qn ≤ θ̄n < p̂n +Qn: setting sn(d∗

n(θ) | θ) in eq. (EC.91)
to be zero, we have θ̄n = pn/Qn + Q2

n/2.
At last, consider p̂nQn + Q2

n/2 ≤ pn ≤ 1
2(Θ − p̂n)2 + p̂nQn. For any customer of type θ ∈ [0,Qn),

sn(d∗
n(θ) | θ) = 1

2θ2 − pn ≤ 1
2θ2 − 1

2Q2
n − p̂nQn ≤ 1

2θ2 − 1
2Q2

n < 0 by eq. (EC.90). In other words, no
customers of types θ ∈ [0,Qn) choose to subscribe. For any customer of type θ ∈ [Qn, p̂n + Qn),
sn(d∗

n(θ) | θ) = θQn − 1
2Q2

n − pn < (p̂n + Qn)Qn − 1
2Q2

n − pn = p̂nQn + Q2
n/2 − pn ≤ 0 by eq. (EC.91).

In other words, no customers of types θ ∈ [Qn, p̂n + Qn) choose to subscribe. Thus, the continuity
of sn implies p̂n + Qn ≤ θ̄n ≤ Θ: setting sn(d∗

n(θ) | θ) in eq. (EC.92) to be zero, we have θ̄n = p̂n +√
2(pn − p̂nQn). □

Proof of Corollary 2. By the proof of Proposition 4, we know the service provider earns the optimal
profit when p̂f Qn + Q2

n/2 ≤ pn ≤ 1
2(Θ − p̂n)2 + p̂nQn. Therefore, θ̄∗

n is given by Eq. (EC.92) in the
proof of Lemma 4, which implies that θ̄∗

n ≥ p̂∗
n +Q∗

n. Moreover, Lemma 3 indicates d∗
n(θ) = θ− p̂∗

n ≥ Q∗
n

for any θ ∈ [θ̄∗
n,Θ]. □
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Proof of Lemma 5. If allowing all to trade in the same resale market, by Lemma 1, d∗
sk

(θ) =
max{θ− p̂s,0}. Thus, ssi

(d∗
si

(θ) | θ)−ssj
(d∗

sj
(θ) | θ) = (−psi

+ p̂si
Qsi

)−(−psj
+ p̂sj

Qsj
) by Eq. (TS.2).

Therefore, all subscribers will choose the same tier k∗, where k∗ = arg max
k=1,2...,K

−psk
+ p̂sk

Qsk
. In other

words, offering a menu of sharing contracts equals to offering one contract. Therefore, restricting
trading to subscribers of the same tier can generate a higher optimal revenue. □

Proof of Proposition 7. Π∗
s ≤ Π∗

n is straightforward since Proposition 6 reveals that the two-part
tariff yields the same revenue as the optimal sharing contract but is a special case of the nonlinear
contract. □

Proof of Proposition 8. Proposition TS1 shows that the service provider may choose (ps,Qs) such
that either sharing with speculators or sharing without speculators takes place. We shall first show
that sharing without speculators yields no less revenue than sharing with speculators.

Consider a given sharing contract (ps,Qs) so that 0 ≤ Qs < Qs. In this case, sharing with speculators
occurs by Proposition TS1(i). Consider the revenue function Πs(ps,Qs) = psF̄ (θ̄s) and note that
F̄ (θ̄s) =

(∫ p̂∗
s+Qs

p̂∗
s−wuQs

θ−p̂∗
s+wuQs

1+wu
f(θ)dθ +

∫ Θ
p̂∗

s+Qs

θ−p̂∗
s+woQs

1+wo
f(θ)dθ

)/
Qs by (TS.18). Thus, we write

Πs(ps,Qs) = psF̄ (θ̄s) = ps

(∫ p̂∗
s+Qs

p̂∗
s−wuQs

θ − p̂∗
s + wuQs

1 + wu

f(θ)dθ +
∫ Θ

p̂∗
s+Qs

θ − p̂∗
s + woQs

1 + wo

f(θ)dθ

)/
Qs.

(EC.93)
Recall

∫ p̂∗
s+Qs

p̂∗
s−wuQs

θ−p̂∗
s+wuQs

1+wu
f(θ)dθ +

∫ Θ
p̂∗

s+Qs

θ−p̂∗
s+woQs

1+wo
f(θ)dθ decreases in p̂∗

s and p̂∗
s ≥ ps/Qs +wuQs/2

by Lemma TS7(i). Therefore, (EC.93) indicates

Πs(ps,Qs) ≤ (ps/Qs)F̄ (ps/Qs − wuQs/2)Qs, (EC.94)

where Qs is defined in Proposition TS1.
We next show that there exists a sharing contract under which sharing without speculators occurs

and the resulting revenue equals to (ps/Qs)F̄ (ps/Qs − wuQs/2)Qs. Therefore, the maximum rev-
enue by inducing sharing without speculators is no less than that with speculators. Denote p̂∗′

s as
the market-clearing price and θ̄′

s as the subscribing threshold, i.e., ss

(
d∗

s(θ̄′
s)|θ̄′

s

)
= (θ̄′

s−p̂∗′
s +wuQ′

s)2

2(1+wu) −
1
2wuQ

′2
s − p′

s + p̂∗′
s Q′

s = 0 under (p′
s,Q

′
s). It can be shown that the market clearing equation (TS.19)

is achieved at θ̄s = p̂∗′
s − wuQ′

s and p̂∗
s = p̂∗′

s under (p′
s,Q

′
s). Moreover, θ̄s = p̂∗′

s − wuQ′
s and p̂∗

s = p̂∗′
s

must be the only solution due to the uniqueness of the equilibrium. Thus, θ̄′
s = p̂∗′

s − wuQ′
s and

ss

(
d∗

s(θ̄′
s)|θ̄′

s

)
= − 1

2wuQ
′2
s − p′

s + p̂∗′
s Q′

s = 0, which imply p̂∗′
s = p′

s/Q′
s + wuQ′

s/2 and θ̄′
s = p̂∗′

s − wuQ′
s =

p′
s/Q′

s − wuQ′
s/2. Recall p′

s/Q′
s = ps/Qs and Q′

s = Qs. Now consider the revenue under (p′
s,Q

′
s)

Πs(p′
s,Q

′
s) = p′

sF̄ (θ̄′
s) = (p′

s/Q′
s)F̄ (p′

s/Q′
s − wuQ′

s/2)Q′
s

= (ps/Qs)F̄ (ps/Qs − wuQs/2)Qs > (ps/Qs)F̄ (ps/Qs − wuQs/2)Qs,
(EC.95)

where the inequality is due to Qs < Qs. Putting (EC.94) and (EC.95) together, we claim that sharing
without speculators must yield a higher revenue than with speculators.

At last, we solve for the optimal contract (p∗
s,Q∗

s). Since p∗
s ≥ 0 and Q∗

s ≥ 0, the optimal solution
is either on the boundary or a stationary point. However, Πs(ps,Qs) = 0 for ps = 0 or Qs = 0 and
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Πs(ps,Qs) > 0 for ps > 0 and Qs > 0. The optimal solution must arise at a stationary point. Consider
the first-order conditions of (7)

∂Πs

∂ps

= F̄ (θ̄s) − psf(θ̄s)
∂θ̄s

∂ps

= 0

∂Πs

∂Qs

= −psf(θ̄s)
∂θ̄s

∂Qs

= 0
⇐⇒


∂θ̄s

∂ps

= F̄ (θ̄s)
psf(θ̄s)

∂θ̄s

∂Qs

= 0
, (EC.96)

which demonstrates the connection of the optimal contact with the subscribing threshold θ̄s. We thus
explore the properties of θ̄s, which arises together with the market clearing price p̂∗

s via (TS.19). Recall
(θ−p̂∗

s+wuQs)2

2(1+wu) − 1
2wuQ2

s −ps + p̂∗
sQs = 0 implies p̂∗

s = θ̄s +
√

(1 + wu)Q2
s − 2(1 + wu)θ̄sQs + 2(1 + wu)ps −

Qs. Then, taking the first derivative of both sides of (TS.19) with respect to ps and Qs respectively,
we have

− θ̄s − p̂∗
s − Qs

1 + wu

f(θ̄s)
∂θ̄s

∂ps

−
(∫ p̂∗

s+Qs

θ̄s

1
1 + wu

f(θ)dθ +
∫ Θ

p̂∗
s+Qs

1
1 + wo

f(θ)dθ

)
∂p̂∗

s

∂ps

= 0, (EC.97)

where ∂p̂∗
s

∂ps
= ∂θ̄s

∂ps
−

(1+wu)(Qs
∂θ̄s
∂ps

−1)√
(1+wu)Q2

s−2(1+wu)θ̄sQs+2(1+wu)ps

. And

− θ̄s − p̂∗
s − Qs

1 + wu

f(θ̄s)
∂θ̄s

∂Qs

−
∫ p̂∗

s+Qs

θ̄s

∂p̂∗
s

∂Qs
− wu

1 + wu

f(θ)dθ −
∫ Θ

p̂∗
s+Qs

∂p̂∗
s

∂Qs
− wo

1 + wo

f(θ)dθ = F̄ (θ̄s), (EC.98)

where ∂p̂∗
s

∂Qs
= ∂θ̄s

∂Qs
−

(1+wu)(Qs
∂θ̄s
∂Qs

+θ̄s−Qs)√
(1+wu)Q2

s−2(1+wu)θ̄sQs+2(1+wu)ps

− 1. Note ∂θ̄s

∂Qs

= 0, we rewrite (EC.98) into
(1+wu)(θ̄s−Qs)√

(1+wu)Q2
s−2(1+wu)θ̄sQs+2(1+wu)ps

(
∫ p̂∗

s+Qs

θ̄s

1
1+wu

f(θ)dθ +
∫ Θ

p̂∗
s+Qs

1
1+wo

f(θ)dθ) = 0. This implies θ̄∗
s = Q∗

s

and p̂∗
s =

√
(1 + wu)(2p∗

s − Q∗2
s ). Plugging θ̄∗

s = Q∗
s and ∂θ̄s

∂ps

= F̄ (θ̄s)
psf(θ̄s)

into (TS.19) and (EC.97), we
get

Q∗
sF̄ (Q∗

s) =
∫ p̂∗

s+Q∗
s

Q∗
s

θ − p̂∗
s + wuQ∗

s

1 + wu

f(θ)dθ +
∫ Θ

p̂∗
s+Q∗

s

θ − p̂∗
s + woQ∗

s

1 + wo

f(θ)dθ

and(∫ p̂∗
s+Q∗

s

Q∗
s

1
1 + wu

f(θ)dθ+
∫ Θ

p̂∗
s+Q∗

s

1
1 + wo

f(θ)dθ
)( F̄ (Q∗

s)
f(Q∗

s) (p̂∗
s −(1+wu)Q∗

s)+ p̂∗2
s + (1 + wu)Q∗2

s

2
)

= p̂∗2
s F̄ (Q∗

s)
1 + wu

.

□

Proof of Proposition 9. By Lemma TS9, if pn > (Θ−p̂n+woQn)2

2(1+wo) + p̂nQn − woQ2
n

2 , no customers sub-
scribe and Π(pn,Qn, p̂n) = 0. We thus only need to consider 0 ≤ pn ≤ (Θ−p̂n+woQn)2

2(1+wo) + p̂nQn − woQ2
n

2 .
Specifically, we deliberate three cases: (a) 0 ≤ pn < Q2

n
2 ; (b) Q2

n
2 ≤ p < p̂nQ2

n + Q2
n

2 ; and (c) p̂nQ2
n + Q2

n
2 ≤

pn ≤ (Θ−p̂n+woQn)2

2(1+wo) + p̂nQn − woQ2
n

2 . We shall show that case (c) yields more profit than the other two
cases and shall characterize the optimal solutions from case (c).

(a) 0 ≤ pn < Q2
n

2 . In this case, θ̄n =
√

(1 + wu)(2pn + wuQ2
n) − wuQn < Qn by (TS.31). The revenue

function in (12) and its derivative in Qn can be written as

Πn(pn,Qn, p̂n) = pnF̄ (θ̄n) + p̂n

∫ Θ

p̂n+Qn

(θ − p̂n − Qn)f(θ)dθ and ∂Πn

∂Qn

= −p̂nF̄ (p̂n + Qn) ≤ 0.

It is obvious that Π(pn,Qn, p̂n) is decreasing in Qn for a given pn if 0 ≤ pn < Q2
n

2 . Hence,
Π(pn,Qn, p̂n) < Π(pn,Qn =

√
(1 + wu)(2pn + wuQ2

n) − wuQn, p̂n) in this case. Therefore, the profit
cannot be more than that when 1

2Q2
n ≤ pn < p̂nQn + 1

2Q2
n, i.e., case (b).
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(b) Q2
n

2 ≤ pn < p̂nQn + Q2
n

2 . In this case, θ̄n = pn/Qn + Qn/2 by (TS.31) and Qn ≤ θ̄n < p̂n + Qn. We
can rewrite the revenue function Πn(pn,Qn, p̂n) in (12) in terms of (θ̄n,Qn, p̂n) as

Πn(θ̄n,Qn, p̂n) = (θ̄nQn − 1
2Q2

n)F̄ (θ̄n) + p̂n

∫ Θ

p̂n+Qn

(θ − p̂n − Qn)f(θ)dθ.

By the same analysis of Case (b) in proof of Proposition 4, we can show that the maximum value
of Πn(θ̄n,Qn, p̂n) must be achieved at θ̄n = p̂n + Qn. In other words, the optimal solution must be a
boundary point, which will be considered in case (c)

(c) p̂nQn + Q2
n

2 ≤ pn ≤ (Θ−p̂n+woQn)2

2(1+wo) + p̂nQn − woQ2
n

2 . By (TS.31), we have θ̄n = p̂n +√
(1 + wo)(2(pn − p̂nQn) + woQ2

n) − woQn ≥ p̂n + Qn, which is derived from setting (TS.34) to zero
so that pn = (θ̄n+woQn−p̂n)2

2(1+wo) − 1
2woQ2

n + p̂nQn. Rewrite the profit function (12),

Πn(pn,Qn, p̂n) = (θ̄n − p̂n)2 + 2woθ̄nQn − woQ2
n − 2p̂2

n

2(1 + wo) F̄ (θ̄n) + p̂n

∫ Θ

θ̄n

θ

1 + wo

f(θ)dθ, (EC.99)

and its derivative in Qn,
∂Πn

∂Qn

= wo(θ̄n − Qn)
1 + wo

F̄ (θ̄n) ≥ 0.

Hence, Π(pn,Qn, p̂n) is increasing in Qn and it is optimal to let Qn = θ̄n − p̂n. Plugging Qn = θ̄n − p̂n

into (EC.99), we get

Πn(pn,Qn, p̂n) = (1
2 θ̄2

n − θ̄np̂n − 1
2 p̂2

n + woθ̄np̂n

1 + wo

)F̄ (θ̄n) + p̂n

∫ Θ

θ̄n

θ

1 + wo

f(θ)dθ,

which only depends on θ̄n and p̂n. By the FOCs, the optimal nonlinear contract must satisfy
∂Πn

∂θ̄n

=
(
θ̄n − p̂n

1 + wo

)
F̄ (θ̄n) − 1

2(θ̄2
n − p̂2

n)f(θ̄n) = 0, (EC.100)

∂Πn

∂p̂n

=
∫ Θ

θ̄n

θ

1 + wo

f(θ)dθ −
( θ̄n

1 + wo

+ p̂n

)
F̄ (θ̄n) = 0. (EC.101)

Solving (EC.100) and (EC.101), we obtain

(1 + wo)2θ̄2
n −

(∫ Θ
θ̄n

θf(θ)dθ

F̄ (θ̄n) − θ̄n

)2

2
[
(1 + wo)2θ̄n −

∫ Θ
θ̄n

θf(θ)dθ

F̄ (θ̄n) + θ̄n

] = F̄ (θ̄n)
f(θ̄n)

, p̂n =

∫ Θ

θ̄n

θf(θ)dθ

(1 + wo)F̄ (θ̄n)
− θ̄n

1 + wo

.

Moreover, p∗
n = (θ̄∗

n+woQ∗
n−p̂∗

n)2

2(1+wo) − 1
2woQ∗2

n + p̂∗
nQ∗

n = (θ̄∗
n−p̂∗

n)2

2 + p̂∗
n(θ̄∗

n − p̂∗
n) due to Q∗

n = θ̄∗
n − p̂∗

n. □

EC4. Proofs in Section EC1
Proof of Lemma EC1. It is obvious that s(d | θ) in (EC.1) is concave in d. Hence, if a customer

has already subscribed to the service, i.e., s(d | θ) ≥ 0, we can derive her demand by the first order
condition (FOC). Taking the derivative, we have

∂s

∂d
= θ − d = 0 ⇐⇒ d∗(θ) = θ.

Note that by definition of a bucket contract, d ≤ Q. Thus, d∗(θ) = min{θ,Q}. According to (EC.1),
we can write s(d∗(θ) | θ) as

s(d∗(θ) | θ) =


1
2θ2 − p, if 0 ≤ θ < Q (EC.102)

θQ − 1
2Q2 − p, if Q ≤ θ ≤ Θ. (EC.103)
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If p > Q2/2+ΘQ, s(d∗(θ = Θ) | θ = Θ) < 0. Since s(d∗(θ) | θ) strictly increases in θ, no customers earn
positive surplus and hence there will be no subscribers. On the other hand, if 0 ≤ p ≤ Q2/2 + ΘQ,
s(d∗(θ = 0) | θ = 0) ≤ 0 and s(d∗(θ = Θ) | θ = Θ) ≥ 0. Therefore, there exists a unique θ̄ such that
s(d∗(θ) | θ) = 0 and customers subscribe to the service if and only if θ ≥ θ̄.

Next, we characterize θ̄. First, let us consider the case 0 ≤ p < Q2/2. For any customer of type
θ ∈ [Q,Θ], s(d∗(θ) | θ) = θQ − 1

2Q2 − p > θQ − Q2 ≥ 0 by Eq. (EC.103). In other words, all customers
of types θ ∈ [Q,Θ] choose to subscribe. This implies θ̄ < Q: setting s(d∗(θ) | θ) in Eq. (EC.102)
to be zero, we have θ̄ =

√
2p. Second, consider Q2/2 ≤ p ≤ Q2/2 + ΘQ. For any customer of type

θ ∈ [0,Q), s(d∗(θ) | θ) = 1
2θ2 − p ≤ 1

2θ2 − 1
2Q2 < 0 by Eq. (EC.102). In other words, no customers of

types θ ∈ [0,Q) choose to subscribe. This implies θ̄ ≥ Q: setting s(d∗(θ) | θ) in Eq. (EC.103) to be
zero, we have θ̄ = p/Q + Q/2 and d∗(θ) = min{θ,Q} = Q for θ ≥ θ̄. □

Proof of Proposition EC1. By Lemma EC1, if p > Q2/2 + ΘQ, no customers subscribe and
Π(p,Q) = 0. We thus only consider two cases: (i) 0 ≤ p < Q2/2 and (ii) Q2/2 ≤ p ≤ Q2/2 + ΘQ.

(i) 0 ≤ p < Q2/2. In this case, θ̄(p,Q) =
√

2p by Lemma EC1 and Π(p,Q) = p · F̄ (θ̄(p,Q)) =
pF̄ (

√
2p) by (EC.2). Note that Π(p,Q) is in fact a univariate function in p and we thus write it in

short as Π(p). Taking the first-order derivative, we have
∂Π
∂p

= F̄ (
√

2p) − 1
2
√

2pf(
√

2p) = 0 ⇐⇒ F̄ (
√

2p)√
2pf(

√
2p) = 1

2 . (EC.104)

We shall show that Eq. (EC.104) has a solution, denoted as p∗, and moreover p∗ = arg maxp Π(p).
Since F (·) has an IFR, F̄ (

√
2p)√

2pf(
√

2p) is decreasing in
√

2p. Note that lim
p→0

F̄ (
√

2p)√
2pf(

√
2p) = ∞ and

lim
p→∞

F̄ (
√

2p)√
2pf(

√
2p) = 0, thus there exists a p∗ such that F̄ (

√
2p)√

2pf(
√

2p) = 1
2 . For the optimality of p∗, let us

consider ∂Π/∂p. Since F (·) has an IFR, it is easy to see, from Eq. (EC.104), that ∂Π/∂p ≥ 0 if
0 ≤ p ≤ p∗ and ∂Π/∂p < 0 if p > p∗. In other words, Π(p) is increasing for p ≤ p∗ and decreasing for
p > p∗. Thus, p∗ = arg maxp Π(p). Moreover, there are infinitely many optimal free allowance Q∗’s as
long as Q∗ >

√
2p∗ and customers subscribe if and only if θ ≥ θ̄(p∗,Q∗) =

√
2p∗.

(ii) Q2/2 ≤ p ≤ Q2/2 + ΘQ. In this case, θ̄(p,Q) = p/Q + Q/2 by Lemma EC1 and Π(p,Q) =
p · F̄ (θ̄(p,Q)) = pF̄ (p/Q + Q/2) by (EC.2). Taking the first-order derivative w.r.t. Q gives

∂Π(p,Q)
∂Q

= f(p/Q + Q/2)
(

p

Q2 − 1
2

)
≥ 0,

which implies that Π(p,Q) is increasing in Q when Q2/2 ≤ p ≤ Q2/2 + ΘQ. Hence, we conclude that
the optimal solution must be obtained when p = Q2/2. We then can transform (EC.2) as follows

max
p,Q

Π(p,Q) = p · F̄
(
θ̄ (p,Q)

)
= pF̄ (p/Q+Q/2) ⇐⇒ max

p
Π
(
p,Q =

√
2p
)

= pF̄
(√

2p
)

. (EC.105)

Following similar analysis as in case (i), we know that Π(p,Q) is maximized when p = p∗ and
Q∗ =

√
2p∗, where p∗ is the solution to (EC.104). Moreover, customers subscribe if and only if θ ≥

θ̄(p∗,Q∗) = p∗/Q∗ + Q∗/2 = Q∗ =
√

2p∗.
Combining the results in cases (i) and (ii), we conclude that the optimal price p∗ is determined by

(EC.3), Q∗ ≥
√

2p∗, and θ̄∗ = θ̄(p∗,Q∗) =
√

2p∗. □
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Proof of Proposition EC2. (i) We first show θ̄s ≤ θ̄. By Lemma 2, the equilibrium under a sharing
mechanism may have two forms: sharing with and without speculators. We shall show that θ̄s ≤ θ̄

hold for both scenarios.
Sharing with speculators. If θ̄s = 0, the result is trivial. If θ̄s > 0, the proof of Lemma 2(i) reveals

that θ̄s < p̂∗
s = ps/Qs. The result θ̄s ≤ θ̄ holds if θ̄ ≥ p/Q = ps/Qs, which we shall show next. By

Lemma EC1, if p < Q2/2, θ̄ =
√

2p, we have
√

2p/(p/Q) =
√

2Q/
√

p >
√

2
√

2p/
√

p = 1; If Q2/2 ≤ p ≤
Q2/2 + ΘQ, θ̄ = p/Q + Q/2 ≥ p/Q.

Sharing without speculators. In this case, (EC.81) implies that 1
2(θ̄s − p̂∗

s)2 = ps − p̂∗
sQs. Moreover,

Lemma 2(ii) shows θ̄s ≥ p̂∗
s. Thus, we have θ̄s =

√
2(ps − p̂∗

sQs) + p̂∗
s. If p < Q2/2, θ̄ =

√
2p by Lemma

EC1 and θ̄ − θ̄s =
√

2p −
√

2(ps − p̂∗
sQs) − p̂∗

s =
√

2p −
√

2(p − p̂∗
sQ) − p̂∗

s = 2p̂∗
sQ

√
2p+

√
2(p−p̂∗

sQ)
− p̂∗

s, where
the second equality is due to (p,Q) = (ps,Qs). Since p < Q2/2 and p̂∗

sQ ≥ 0,

θ̄ − θ̄s = 2p̂∗
sQ

√
2p +

√
2(p − p̂∗

sQ)
− p̂∗

s >
2p̂∗

s

√
2p

√
2p +

√
2(p − p̂∗

sQ)
− p̂∗

s ≥ 2p̂∗
s

√
2p√

2p +
√

2p
− p̂∗

s = 0 ⇔ θ̄s < θ̄.

Consider Q2/2 ≤ p ≤ Q2/2 + ΘQ and apply the inequality of arithmetic and geometric means,

θ̄ = p/Q + Q/2 = (p/Q − p̂∗
s) + Q/2 + p̂∗

s ≥
√

2(p − p̂∗
sQ) + p̂∗

s =
√

2(ps − p̂∗
sQs) + p̂∗

s = θ̄s,

where the third equality is due to the fact (p,Q) = (ps,Qs).
Next, we show θ̄n ≤ θ̄. We will consider two scenarios according to the values of p and Q. (a) If

p < Q2/2, θ̄ =
√

2p by Lemma EC1. Since pn = p and Qn = Q, pn < Q2
n/2 as well. By Lemma 4, pn <

Q2
n/2, θ̄n =

√
2pn = θ. (b) If Q2/2 ≤ p ≤ Q2/2+ΘQ, θ̄ = p/Q+Q/2 by Lemma EC1. However, θ̄n may

have two forms according to Lemma 4. In case that Q2
n/2 ≤ pn < p̂nQn + Q2

n/2, θ̄n = pn/Qn + Qn/2.
Then, θ̄n = θ̄. In case that p̂nQn + Q2

n/2 ≤ pn ≤ 1
2(Θ − p̂n)2 + p̂nQn, θ̄n = p̂n +

√
2(pn − p̂nQn). Taking

the first-order derivative of θ̄n w.r.t. p̂n,
∂θ̄n

∂p̂n

= 1 − Qn√
2(pn − p̂nQn)

≥ 1 − Qn√
2(p̂nQn + Q2

n/2 − p̂nQn)
= 0,

where the inequality is due to p̂nQn + Q2
n/2 ≤ pn. Thus, θ̄n increases in p̂n, which implies that

θ̄n = p̂n +
√

2(pn − p̂nQn)
≤ pn/Qn − Qn/2 +

√
2(pn − (pn/Qn − Qn/2)Qn)

= pn/Qn + Qn/2
= p/Q + Q/2
= θ̄.

The inequality is because p̂n ≤ pn/Qn − Qn/2 by p̂nQn + Q2
n/2 ≤ pn and the second-last equality is

due to the fact that (p,Q) = (pn,Qn).
(ii) We first show ss(d∗

s(θ) | θ) ≥ s(d∗(θ) | θ). Note we have proved that θ̄s ≤ θ̄ in Proposition EC2(i).
Thus, customers of type θ < θ̄ subscribe to neither contracts, thus their surplus equals zero under
both contracts. For customers of type θ̄s ≤ θ < θ̄, they only subscribe to the sharing contract but not
to the bucket contract by Lemmas 1 and EC1, respectively. Therefore, ss(d∗

s(θ) | θ) ≥ s(d∗(θ) | θ) = 0.
Next, we consider customers of type θ ≥ θ̄ for two cases:
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(a) θ̄ ≤ θ < p̂∗
s. In this case, d∗(θ) = min{θ,Q} and d∗

s(θ) = max{θ − p̂∗
s,0} = 0. By (EC.1) and (4),

s(d∗(θ) | θ) = θd∗(θ) − 1
2 (d∗(θ))2 − p ≤ θd∗(θ) − p < p̂∗

sQ − p = ss(d∗
s(θ) | θ),

where the last inequality is due to θ < p̂∗
s and d∗(θ) ≤ Q.

(b) θ ≥ p̂∗
s. In this case, d∗(θ) = min{θ,Q} and d∗

s(θ) = max{θ − p̂∗
s,0} = θ − p̂∗

s. By (EC.1) and (4),

s(d∗(θ) | θ) = θd∗(θ) − 1
2 (d∗(θ))2 − p = θd∗(θ) − p̂∗

sQ − 1
2 (d∗(θ))2 + p̂∗

sQ − p.

Since d∗(θ) ≤ Q, then

s(d∗(θ) | θ) ≤ θd∗(θ) − p̂∗
sd∗(θ) − 1

2 (d∗(θ))2 + p̂∗
sQ − p ≤ 1

2(θ − p̂∗
s)2 + p̂∗

sQ − p = ss(d∗
s(θ) | θ),

where the last inequality is because (θ − p̂∗
s) · d∗(θ) ≤ 1

2(θ − p̂∗
s)2 + 1

2 (d∗(θ))2.
We next show sn(d∗

n(θ) | θ) ≥ s(d∗(θ) | θ). Note we have proved that θ̄n ≤ θ̄ in Proposition EC2(i).
Thus, customers of type θ < θ̄ subscribe to neither contracts, i.e., sn(d∗

n(θ) | θ) = s(d∗(θ) | θ) = 0. For
customers of type θ̄n ≤ θ < θ̄, they only subscribe to the nonlinear contract by Lemma 4 but not to
the bucket contract by Lemma EC1. Therefore, sn(d∗

n(θ) | θ) ≥ s(d∗(θ) | θ) = 0. For customers of type
θ ≥ θ̄, we consider three cases:

(a) θ̄ ≤ θ < Qn. In this case, d∗(θ) = min{θ,Q} = θ by Proposition EC1(ii) and d∗
n(θ) = θ by (10).

Since (p,Q) = (pn,Qn) and p̂n ≥ 0, we have, from (EC.1) and (9), that

s(d∗(θ) | θ) = θd∗(θ) − 1
2 (d∗(θ))2 − p = θd∗

n(θ) − 1
2(d∗

n(θ))2 − pn − p̂n(d∗
n(θ) − Q)+ = sn(d∗

n(θ) | θ).

(b) Qn ≤ θ < p̂n + Qn. In this case, d∗(θ) = min{θ,Q} = Q by Proposition EC1(ii) and d∗
n(θ) = Qn

by (10). Since (p,Q) = (pn,Qn) and p̂n ≥ 0, we have, from (EC.1) and (9), that

s(d∗(θ) | θ) = θd∗(θ) − 1
2 (d∗(θ))2 − p = θd∗

n(θ) − 1
2(d∗

n(θ))2 − pn − p̂n(d∗
n(θ) − Q)+ = sn(d∗

n(θ) | θ).

(c) p̂n +Qn ≤ θ ≤ Θ. In this case, d∗(θ) = min{θ,Q} = Q by Proposition EC1(ii) and d∗
n(θ) = θ − p̂n

by (10). We have, from (EC.1) and (9), that

s(d∗(θ) | θ) = θd∗(θ) − 1
2 (d∗(θ))2 − p = θQ − 1

2Q2 − p,

and

sn(d∗
n(θ) | θ) = θd∗

n(θ) − 1
2(d∗

n(θ))2 − pn − p̂n(d∗
n(θ) − Q)+ = 1

2θ2 − θp̂n + 1
2 p̂2

n + p̂nQn − pn.

Taking the difference,

sn(d∗
n(θ) | θ) − s(d∗(θ) | θ) = 1

2θ2 − (p̂n + Q)θ + 1
2 p̂2

n + p̂nQn + 1
2Q2 + p − pn

= 1
2θ2 − (p̂n + Q)θ + 1

2(p̂n + Q)2

= 1
2(θ − p̂n − Q)2

≥ 0,

where the second equality is because (p,Q) = (pn,Qn).
(iii) By (EC.2) and (7), Π(p,Q) = pF̄ (θ̄) and Πs(ps,Qs) = psF̄ (θ̄s). Recall from Proposition EC2(i)

that θ̄s ≤ θ̄. Hence, Πs(ps,Qs) ≥ Π(p,Q) when (p,Q) = (ps,Qs). By (12), Πn(pn,Qn, p̂n) = pnF̄ (θ̄n) +
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p̂n ·
∫ Θ

max{θ̄n,p̂n+Qn}
[(θ − p̂n) − Qn]dF (θ). Since θ̄n ≤ θ̄ from (i) and p̂n ≥ 0, Πn(pn,Qn, p̂n) ≥ Π(p,Q)

when (p,Q) = (pn,Qn). □

Proof of Proposition EC3. (i) We first show θ̄∗
s ≤ θ̄∗. By Proposition 3, we have θ̄∗

s = Q∗
s. Thus, θ̄∗

s

also satisfies (8), i.e., F̄ (θ̄∗
s)

f(θ̄∗
s)

=
∫ Θ

θ̄∗
s

θf(θ)dθ

2F̄ (θ̄∗
s ) , which implies that

F̄ (θ̄∗
s)

θ̄∗
sf(θ̄∗

s)
=
∫ Θ

θ̄∗
s

θf(θ)dθ

2θ̄∗
s F̄ (θ̄∗

s)
≥ 1

2 = F̄ (θ̄∗)
θ̄∗f(θ̄∗)

. (EC.106)

The inequality in (EC.106) is due to
∫ Θ

θ̄∗
s

θf(θ)dθ ≥ θ̄∗
s F̄ (θ̄∗

s) and the last equality results from

F̄ (θ̄∗)
θ̄∗f(θ̄∗)

= 1
2 in Proposition EC1.

Recall that F (·) has an increasing generalized failure rate, i.e., F̄ (x)
xf(x) is decreasing in x. Conse-

quently, (EC.106) implies that θ̄∗
s ≤ θ̄∗. By Proposition 4(i), F̄ (θ̄∗

n)
f(θ̄∗

n)
=
∫ Θ

θ̄∗
n

θf(θ)dθ

2F̄ (θ̄∗
n) . Applying analogous

analysis as above, it is easy to see θ̄∗
n ≤ θ̄∗.

(ii) This result is straightforward from Proposition EC2(iii).
(iii) Recall that θ̄∗ = Q∗ and θ̄∗

s = Q∗
s from Propositions EC1 and 3, respectively. Since θ̄∗

s ≤ θ̄∗ from
Proposition EC3(i), we have Q∗

s ≤ Q∗. Moreover, we have Q∗
n ≤ θ̄∗

n − p̂∗
n ≤ θ̄∗

n from (13). Since θ̄∗
n ≤ θ̄∗

from Proposition EC3(i), we have Q∗
n ≤ Q∗.

We now write out the total usage under each optimal contract. The total usage under the optimal
bucket contract can be written as

∫ Θ

θ̄∗
d∗(θ)f(θ)dθ. Since d∗(θ) = min{θ,Q} by Proposition EC1, we

can find an upper bound of the total usage, i.e.,

∫ Θ

θ̄∗
d∗(θ)f(θ)dθ ≤ Q∗F̄ (θ̄∗) = Q∗F̄ (Q∗).14 (EC.107)

Under the sharing contract, all goods sold by the provider will be consumed due to the market
clearing mechanism. The total usage under the optimal sharing contract is∫ Θ

θ̄∗
s

d∗
s(θ)f(θ)dθ = Q∗

sF̄ (θ̄∗
s) = Q∗

sF̄ (Q∗
s), (EC.108)

where the last equality is because θ̄∗
s = Q∗

s by Proposition 3. The total usage under the optimal
nonlinear contract can be written as∫ Θ

θ̄∗
n

d∗
n(θ)f(θ)dθ =

∫ Θ

θ̄∗
n

(θ − p̂∗
n)f(θ)dθ =

∫ Θ

θ̄∗
n

θdF (θ) −
∫ Θ

θ̄∗
n

θf(θ)dθ + θ̄∗
nF̄ (θ̄∗

n) = θ̄∗
nF̄ (θ̄∗

n), (EC.109)

where the first equality stems from Corollary 2 and the second equality is due to p̂∗
n =∫ Θ

θ̄∗
n

θf(θ)dθ/F̄ (θ∗
n) − θ̄∗

n in Proposition 4.

In order to show
∫ Θ

θ̄∗
s

d∗
s(θ)f(θ)dθ ≥

∫ Θ

θ̄∗
d∗(θ)f(θ)dθ and

∫ Θ

θ̄∗
n

d∗
n(θ)f(θ)dθ ≥

∫ Θ

θ̄∗
d∗(θ)f(θ)dθ. We

need to establish the following lemma.

14 Note that there exist multiple optimal bucket contracts and we choose the smallest optimal allowance for the proof.
In this case, θ̄∗ = Q∗ by Proposition EC1.



32

Lemma EC2. If F (x) has an increasing failure rate (IFR), then xF̄ (x) has an inverted U-shape
in [0,Θ], i.e., there exists a unique x∗ such that xF̄ (x) increases in [0, x∗] and decreases in [x∗,Θ].

Proof of Lemma EC2. Consider the derivative
(
xF̄ (x)

)′
= F̄ (x) − xf(x). Since

(
xF̄ (x)

)′

x=0
= 1

and
(
xF̄ (x)

)′

x=Θ
< 0. Therefore, there exists an x∗ > 0 such that

(
xF̄ (x)

)′

x=x∗
= F̄ (x∗)−x∗f(x∗) = 0,

or equivalently, F̄ (x∗)
x∗f(x∗) = 1. Moreover, since F (·) has an IFR, i.e., F̄ (x)

xf(x) is decreasing in x, such an x∗

must also be unique. As a result, for any 0 < x < x∗ (x > x∗), F̄ (x)
xf(x) ≥ (≤) F̄ (x∗)

x∗f(x∗) = 1, which implies
that

(
xF̄ (x)

)′
= F̄ (x) − xf(x) ≥ (≤)0. □

To show
∫ Θ

θ̄∗
s

d∗
s(θ)f(θ)dθ ≥

∫ Θ

θ̄∗
d∗(θ)f(θ)dθ, (EC.107) and (EC.108) suggest that it is sufficient to

demonstrate Q∗
sF̄ (Q∗

s) ≥ Q∗F̄ (Q∗), which will hold if x∗ ≤ Q∗
s ≤ Q∗ due to Lemma EC2. Since we have

proved Q∗
s ≤ Q∗, we only need to show x∗ ≤ Q∗

s. Proposition 3 indicates F̄ (Q∗
s)

f(Q∗
s) =

∫ Θ
Q∗

s
θf(θ)dθ/(2F̄ (Q∗

s))
and we also have

∫ Θ
θ∗

s
θf(θ)dθ/F̄ (θ∗

s) = (Q∗
s + p̂∗

s) from (EC.17). As a result,
F̄ (Q∗

s)
f(Q∗

s) =
∫ Θ

Q∗
s

θf(θ)dθ

/
(2F̄ (Q∗

s)) = (Q∗
s + p̂∗

s)/2 ≤ Q∗
s, (EC.110)

where the inequality is due to the fac that θ∗
s = Q∗

s by Proposition 3 and θ∗
s ≥ p̂∗

s by Lemma 2. Since
F̄ (x∗)

x∗f(x∗) = 1 and F̄ (x)
xf(x) decreases in x, we thus conclude x∗ ≤ Q∗

s due to F̄ (Q∗
s)

Q∗
sf(Q∗

s) ≤ 1 from (EC.110).

To show
∫ Θ

θ̄∗
n

d∗
n(θ)f(θ)dθ ≥

∫ Θ

θ̄∗
d∗(θ)f(θ)dθ, (EC.107) and (EC.109) suggest that it is sufficient to

demonstrate θ̄∗
nF̄ (θ̄∗

n) ≥ Q∗F̄ (Q∗), which will hold if x∗ ≤ θ̄∗
n ≤ Q∗ due to Lemma EC2. Recall that

θ̄∗
n ≤ θ̄∗ by Proposition EC3(i) and θ̄∗ = Q∗ by Proposition EC1, thus it is obvious that θ̄∗

n ≤ Q∗.
Then, we only need to show x∗ ≤ θ̄∗

n. By Proposition 4,
F̄ (θ̄∗

n)
f(θ̄∗

n)
=
∫ Θ

Q∗
n

θf(θ)dθ

2F̄ (θ̄∗
n)

= (θ̄∗
n + p̂∗

n)/2 ≤ θ̄∗
n,

where the second equality is due to (EC.35), and the inequality is due to θ̄∗
n − p̂∗

n ≥ 0 from Proposition
4. With similar analysis applied to (EC.110), it follows that x∗ ≤ θ̄∗

n. □

Proof of Proposition EC4. Note Π∗
s ≤ Π∗

n from Proposition 7, then we should prove Π∗ ≤ Π∗
s. We

first prove a property of the optimal bucket contract.

Lemma EC3. There must exist an optimal bucket contract such that Q∗ ≥ θ+ϵu
θ for any subscriber

of a given type θ.

Proof of Lemma EC3. Let (p∗,Q∗) be an optimal bucket contract. Pick an arbitrary subscriber of
the bucket contract (p∗,Q∗) and assume she is type θ. For a realized ϵθ, we can write her optimal
demand and utility as

d∗(θ + ϵθ) =


0, if θ + ϵθ < 0
θ + ϵθ, if 0 ≤ θ + ϵθ < Q∗

Q∗, if θ + ϵθ ≥ Q∗
and u∗(d∗ | θ + ϵθ) =


0, if θ + ϵθ < 0
(θ + ϵθ)2/2, if 0 ≤ θ + ϵθ < Q∗

(θ + ϵθ)Q∗ − Q∗2/2, if θ + ϵθ ≥ Q∗,
respectively. Since c(d∗ | θ + ϵθ) = p∗, we have

s∗(d∗ | θ + ϵθ) = u∗(d∗ | θ + ϵθ) − c(d∗ | θ + ϵθ) =


−p∗, if θ + ϵθ < 0 (EC.111a)
(θ + ϵθ)2/2 − p∗, if 0 ≤ θ + ϵθ < Q∗ (EC.111b)
(θ + ϵθ)Q∗ − Q∗2/2 − p∗, if θ + ϵθ ≥ Q∗. (EC.111c)
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Therefore, the expected surplus s(p∗,Q∗ | θ) of this type-θ subscriber is

s(p∗,Q∗ | θ)
= Eϵθ

[s∗(d∗ | θ + ϵθ)]
= P(θ + ϵθ < 0)Eϵθ

[−p∗ | θ + ϵθ < 0] +P(0 ≤ θ + ϵθ < Q∗)Eϵθ

[
(θ + ϵθ)2/2 − p∗ | 0 ≤ θ + ϵθ < Q∗]

+P(θ + ϵθ ≥ Q∗)Eϵθ

[
(θ + ϵθ)Q∗ − Q∗2/2 − p∗ | θ + ϵθ ≥ Q∗]

= P(0 ≤ θ + ϵθ < Q∗)Eϵθ

[
(θ + ϵθ)2/2 | 0 ≤ θ + ϵθ < Q∗]

+P(θ + ϵθ ≥ Q∗)Eϵθ

[
(θ + ϵθ)Q∗ − Q∗2/2 | θ + ϵθ ≥ Q∗]− p∗

= Eϵθ

[
(θ + ϵθ)2/2

]
−P(θ + ϵθ ≥ Q∗)Eϵθ

[
(θ + ϵθ − Q∗)2/2 | θ + ϵθ ≥ Q∗]− p∗. (EC.112)

Note that (EC.112) implies that s(p∗,Q∗ | θ) strictly increases in Q∗. Thus, increasing Q∗ to θ + ϵu
θ

while fixing p∗ improves all subscribers’ surpluses and they would still subscribe to the new contract.
In the meanwhile, non-subscribers may also sign up for the new contract since p∗ stays but Q∗

increases. Therefore, the lemma holds. □

Now we turn to demonstrate Π∗ ≤ Π∗
s. Let (p∗,Q∗) denote the optimal bucket contract such that

Q∗ ≥ θ + ϵu
θ for any subscriber of a given type θ. We shall prove that an bucket subscriber earns less

utility for any valuation perturbation ϵθ than does she subscribe to the sharing contract (ps,Qs) =
(p∗,Q∗). Therefore, any customer who subscribes to the bucket contract (p∗,Q∗) would also subscribe
to the sharing contract (ps,Qs) = (p∗,Q∗).

Suppose that a type-θ customer subscribes to the optimal bucket contract (p∗,Q∗). For a realized
ϵθ, (EC.111) characterizes her surplus. For the same type-θ subscriber, if she were offered a sharing
contract (ps,Qs) = (p∗,Q∗), by (19) and (20) her surplus can be written as

s∗
s(d∗

s | θ + ϵθ) =

−ps + p̂Qs = −p∗ + p̂sQ
∗, if θ + ϵθ < p̂s

1
2(θ + ϵθ − p̂s)2 − ps + p̂sQ

∗ = 1
2(θ + ϵθ − p̂s)2 − p∗ + p̂sQ

∗, if θ + ϵθ ≥ p̂s.

To show s∗(d∗ | θ + ϵθ) ≤ s∗
s(d∗

s | θ + ϵθ), let us consider the following three cases:
(i) θ + ϵθ < 0. In this case, s(d∗ | θ + ϵθ) = −p∗ ≤ −p∗ + p̂sQ

∗ = s∗
s(d∗

s | θ + ϵθ) since p̂s ≥ 0.
(ii) 0 ≤ θ + ϵθ < p̂s. In this case, s∗(d∗ | θ + ϵθ) = 1

2(θ + ϵθ)2 − p∗ < p̂sQ
∗ − p∗ = s∗

s(d∗
s | θ + ϵθ) since

(θ + ϵθ)/2 < θ + ϵu
θ ≤ Q∗ by Lemma EC3.

(iii) θ + ϵθ ≥ p̂s. In this case, s∗(d∗ | θ + ϵθ) = 1
2(θ + ϵθ)2 −p∗ ≤ 1

2(θ + ϵθ)2 + p̂s(Q∗ −θ − ϵθ)+ 1
2 p̂2

s −p∗ =
1
2(θ + ϵθ − p̂s)2 + p̂sQ

∗ − p∗ = s∗
s(d∗

s | θ + ϵθ) since p̂s ≥ 0 and θ + ϵθ ≤ θ + ϵu
θ ≤ Q∗ by Lemma EC3.

Therefore, Π∗ ≤ Π∗
s. □
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Technical Supplement of “Digital Goods Reselling: Implications
on Cannibalization and Price Discrimination”

TS1. Ancillary Results of Proposition 1
Lemma TS1. Assume that the provider offers a sharing contract (ps,Qs, ts). There exists a unique

θ̄s such that customers subscribe to the service if and only if θ ≥ θ̄s. The subscriber’s demand satisfies

d∗
s(θ) =


max{θ − p̂s + ts,0}, if θ̄s ≤ θ < p̂s + Qs − ts

Qs, if p̂s + Qs − ts ≤ θ ≤ p̂s + Qs + ts

θ − p̂s − ts, otherwise

(TS.1)

where p̂s is market-clearing price of a unit of the goods.

Proof of Lemma TS1. If a customer decides to subscribe to the service, i.e., ss(ds | θ) ≥ 0, we can

derive her marginal utility change
∂ss

∂ds

=
{

θ − ds − p̂s + ts, if 0 ≤ ds ≤ Qs

θ − ds − p̂s − ts, otherwise .

First, there must be a unique optimal d∗
s because the marginal utility change is monotone in ds.

Moreover, since ds ≥ 0, we have that if θ < p̂s −ts, then ∂ss
∂ds

< 0 and d∗
s = 0; If p̂s −ts ≤ θ < p̂s +Qs −ts,

ss(ds | θ) is maximized at d∗
s(θ) = θ − p̂s + ts ≤ Qs; If p̂s + Qs − ts ≤ θ ≤ p̂s + Qs + ts, for ds ≤ Qs,

∂ss
∂ds

= θ − ds − p̂s + ts ≥ 0, for ds ≥ Qs, ∂ss
∂ds

= θ − ds − p̂s − ts ≤ 0, then ss(ds | θ) is maximized at

d∗
s(θ) = Qs; Otherwise, ss(ds | θ) is maximized at d∗

s(θ) = θ − p̂s − ts ≥ Qs. By (4),

d∗
s(θ) =


0, if 0 ≤ θ < p̂s − ts

θ − p̂s + ts, if p̂s − ts ≤ θ < p̂s + Qs − ts

Qs, if p̂s + Qs − ts ≤ θ ≤ p̂s + Qs + ts

θ − p̂s − ts, otherwise
and

ss (d∗
s(θ) | θ) =


(p̂s − ts)Qs − ps, if 0 ≤ θ < p̂s − ts

1
2(θ − p̂s + ts)2 + (p̂s − ts)Qs − ps, if p̂s − ts ≤ θ < p̂s + Qs − ts

θQs − 1
2Q2

s − ps, if p̂s + Qs − ts ≤ θ ≤ p̂s + Qs + ts

1
2(θ − p̂s − ts)2 + (p̂s + ts)Qs − ps, otherwise.

If (p̂s − ts)Qs − ps ≥ 0, customers of type θ < p̂s − ts are speculators who have the intention of

purchasing for resales only (without any self-consumption) and customers of type θ ≥ p̂s − ts purchase

with strictly positive consumption. Note that not all customers of type θ < p̂s − ts would subscribe

since the market clearing price p̂s is endogenous. Thus, only a fraction of customers of type θ < p̂s − ts

eventually subscribe. With loss of generality, we define θ̄s as the largest θ that is smaller than p̂s − ts

and yields the market clearing price p̂s. (Who are the subscribing speculators is not critical as long

as the measure of the subscribing speculator set is fixed. Moreover, we will show that the provider

will price out speculators at optimality.)

If (p̂s − ts)Qs − ps ≥ 0, ss(d∗
s(θ) | θ) strictly increases in θ for θ ≥ p̂s − ts. Hence, there exists a
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unique θ̄s ≥ p̂s − ts such that ss(d∗
s(θ) | θ) ≥ 0 if and only if θ ≥ θ̄s. In particular, let θ̄s ≥ 0 be the

solution to

ss (d∗
s(θ)|θ) = 1

2(θ − p̂s + ts)2 + (p̂s − ts)Qs − ps = 0. (TS.2)

We thus claim that customers subscribe to the service if and only if θ ≥ θ̄s. □

Lemma TS2. Assume that the service provider offers a sharing contract (ps,Qs, ts). Let θ̄s be the
cutoff such that customers of type θ ≥ θ̄s subscribe and let p̂∗

s be the equilibrium market clearing price.
(i) The sharing market has an equilibrium with speculators, i.e., some subscribers resell all their

allowances, if and only if p̂∗
s ≥ ps/Qs + ts and 0 ≤ θ̄s < p̂∗

s − ts. Moreover, p̂∗
s and θ̄s must satisfy

the following equality

Qs

[∫ p̂∗
s +Qs−ts

θ̄s

f(θ)dθ +
∫ Θ

p̂∗
s +Qs+ts

f(θ)dθ

]
+ p̂∗

s

[∫ p̂∗
s +Qs−ts

p̂∗
s −ts

f(θ)dθ +
∫ Θ

p̂∗
s +Qs+ts

f(θ)dθ

]
=
∫ p̂∗

s +Qs−ts

p̂∗
s −ts

(θ + ts)f(θ)dθ +
∫ Θ

p̂∗
s +Qs+ts

(θ − ts)f(θ)dθ.

(TS.3)

(ii) The sharing market has an equilibrium without speculators, i.e., all subscribers consume some
of the allowance, if and only if ts ≤ p̂∗

s ≤ ps/Qs + ts and θ̄s ≥ p̂∗
s − ts. Moreover, p̂∗

s and θ̄s must
satisfy the following equality

(Qs + p̂∗
s)
[∫ p̂∗

s +Qs−ts

θ̄s

f(θ)dθ +
∫ Θ

p̂∗
s +Qs+ts

f(θ)dθ

]
=
∫ p̂∗

s +Qs−ts

θ̄s

(θ + ts)f(θ)dθ +
∫ Θ

p̂∗
s +Qs+ts

(θ − ts)f(θ)dθ. (TS.4)

Proof of Lemma TS2. (i) By Lemma TS1, for speculators who does not consume any data, d∗
s(θ) =

max{θ − p̂∗
s + ts,0} = 0, which occurs if and only if θ̄s < p̂∗

s − ts. For these speculators, the fact that
they subscribe to the service indicates that ss(d∗

s(θ) | θ) = (p̂∗
s − ts)Qs −ps ≥ 0. Thus, p̂∗

s ≥ ps/Qs + ts.
In this case, the total supply and demand of the sharing market are∫ p̂∗

s+Qs−ts

θ̄s

[Qs − d∗
s(θ)]f(θ)dθ =

∫ p̂∗
s−ts

θ̄s

Qsf(θ)dθ +
∫ p̂∗

s+Qs−ts

p̂∗
s−ts

(Qs − (θ − p̂∗
s + ts))f(θ)dθ (TS.5)

and ∫ Θ

p̂∗
s+Qs+ts

(d∗
s(θ) − Qs)f(θ)dθ =

∫ Θ

p̂∗
s+Qs+ts

((θ − p̂∗
s − ts) − Qs)f(θ)dθ, (TS.6)

respectively. Equating (TS.5) and (TS.6), we attain the market clearing condition (TS.3).
(ii) If there are no speculators, Lemma TS1 indicates that d∗

s(θ) = θ− p̂∗
s +ts for θ̄s ≤ θ < p̂∗

s +Qs −ts,
which occurs if and only if θ̄s ≥ p̂∗

s − ts. For these subscribers, ss(d∗
s(θ) | θ) ≥ 0. In particular, for

the subscriber of type θ̄s, ss(d∗
s(θ̄s) | θ̄s) = 1

2(θ̄s − p̂∗
s + ts)2 − p∗

s + (p̂∗
s − ts)Q∗

s = 0, or equivalently,
1
2(θ̄s − p̂∗

s + ts)2 = p∗
s − (p̂∗

s − ts)Q∗
s ≥ 0. Thus, p̂∗

s ≤ p∗
s/Q∗

s + ts. In this case, the total supply and
demand of the sharing market are∫ p̂∗

s+Qs−ts

θ̄s

(Qs − d∗
s(θ))f(θ)dθ =

∫ p̂∗
s+Qs−ts

θ̄s

(Qs − (θ − p̂∗
s + ts))f(θ)dθ (TS.7)

and ∫ Θ

p̂∗
s+Qs+ts

(d∗
s(θ) − Qs)f(θ)dθ =

∫ Θ

p̂∗
s+Qs+ts

((θ − p̂∗
s − ts) − Qs)f(θ)dθ, (TS.8)

respectively. Equating (TS.7) and (TS.8) for market clearing, we obtain in (TS.4). □
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TS2. Ancillary Results of Theorem 3
Lemma TS3. Assume that the service provider offers a K-tier menu of sharing contracts, denoted

by {psk
,Qsk

}, k = 1,2 . . . ,K, with ascending market clearing prices p̂s1 ≤ p̂s2 ≤ . . . ≤ p̂sK
. Then,

(i) for any given two items i < j, ssi
(d∗

si
(θ) | θ) − ssj

(d∗
sj

(θ) | θ) (weakly) increases in θ;
(ii) if customers of types θ˜ and θ̃ choose item sk of the menu, so do all customers of types θ ∈ [θ˜, θ̃].

Proof of Lemma TS3. (i) By Eq. (TS.2) and Lemma 1, if θ ≤ p̂si
, then ssi

(d∗
si

(θ) | θ) − ssj
(d∗

sj
(θ) |

θ) = (−psi
+ p̂si

Qsi
)−(−psj

+ p̂sj
Qsj

) is constant; if p̂si
≤ θ ≤ p̂sj

, then ssi
(d∗

si
(θ) | θ)−ssj

(d∗
sj

(θ) | θ) =
1
2(θ − p̂si

)2 − psi
+ p̂si

Qsi
− (−psj

+ p̂sj
Qsj

) increases in θ; if p̂sj
≤ θ, then ssi

(d∗
si

(θ) | θ) − ssj
(d∗

sj
(θ) |

θ) = 1
2(θ − p̂si

)2 − psi
+ p̂si

Qsi
− ( 1

2(θ − p̂sj
)2 − psj

+ p̂sj
Qsj

) = 1
2(p̂sj

− p̂si
)(2θ − p̂sj

− p̂si
) − psi

+
p̂si

Qsi
− (−psj

+ p̂sj
Qsj

) increases in θ. In sum, ssi
(d∗

si
(θ) | θ) − ssj

(d∗
sj

(θ) | θ) increases in θ.
(ii) We show the result by contradiction. Assume that there exists a type-θ′ customer who chooses

a different item sj than sk, where θ′ ∈ [θ˜, θ̃]. Without loss of generality, let us further assume p̂sk
≤ p̂sj

and consider ssk
(d∗

sk
(θ) | θ) − ssj

(d∗
sj

(θ) | θ). The fact that both type-θ˜ and type-θ̃ customers choose
item sk implies that ssk

(d∗
sk

(θ˜) | θ˜)−ssj
(d∗

sj
(θ˜) | θ˜) ≥ 0 and ssk

(d∗
sk

(θ̃) | θ̃)−ssj
(d∗

sj
(θ̃) | θ̃) ≥ 0 , whereas

for the type-θ′ customer ssk
(d∗

sk
(θ′) | θ′) − ssj

(d∗
sj

(θ′) | θ′) ≤ 0. Thus, ssk
(d∗

sk
(θ) | θ) − ssj

(d∗
sj

(θ) | θ) is
not monotone in θ, which contradicts with Lemma TS3(i). □

Lemma TS4. It is optimal to offer a K-tier menu of sharing contracts such that no speculators
subscribe in equilibrium.

Proof of Lemma TS4. Lemma TS3 implies that a K-tier menu will separate customers to K inter-
vals according to their types. Without of loss generality, assume that customers in the i-th interval
choose item si. Moreover, let the left endpoint of the i-th interval denote as θ̄i and θ̄1 ≤ θ̄2 ≤ . . . ,≤ θ̄K .

We prove the result by contradiction. Suppose that there exist some speculators who choose item
si. By Lemma 2(i), we have θ̄i < p̂si

and p̂si
Qsi

− psi
≥ 0.

First, we will show that speculators must be among those who choose s1. Assume that speculators
choose an item si where i > 1. It can be shown that a type-θ̄i subscriber must be a speculator and
ssi−1(d∗

si
(θ̄i) | θ̄i) = ssi

(d∗
si

(θ̄i) | θ̄i) = p̂si
Qsi

− psi
> 0 at optimality. Then, there must exist another

speculator of type θ′ = θ̄i + ϵ ∈ (θ̄i, p̂si
) purchasing item si as well, i.e., ssi

(d∗
si

(θ′) | θ′) = p̂si
Qsi

−psi
>

ssi−1(d∗
si

(θ′) | θ′). However, for such a speculator, we also have ssi−1(d∗
si

(θ′) | θ′) ≥ ssi−1(d∗
si

(θ̄i) | θ̄i) =
ssi

(d∗
si

(θ̄i) | θ̄i) = ssi
(d∗

si
(θ′) | θ′), where the first inequality is because ssi−1(d∗

si
(θ̄i) | θ̄i) increases in θ.

A contradiction arises. Hence, if there exist any speculators, they must choose item s1.
Next, we demonstrate that the optimal menu must eliminate all speculators from item s1. By

Lemma 2(i), if there are speculators purchasing s1, then θ̄1 < p̂s1 and p̂s1Qs1 − ps1 ≥ 0.
Assume p̂s1Qs1 −ps1 > 0 at optimality. Then we can construct a new menu by setting p′

s1
= p̂s1Qs1

and p′
si

= psi
+ p′

s1
− ps1 for i ≥ 2. It is easy to show that the surplus difference of any arbitrary two

items of the menus is unchanged under this new menu {p′
si

,Qsi
}, i = 1,2 . . . ,K. Hence, customers

who choose item si from menu {psi
,Qsi

} will still purchase item si from {p′
si

,Qsi
}. Moreover, since
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p′
si

> psi
for any i = 1, . . . ,K, menu {p′

si
,Qsi

} thus induces a higher revenue, which contradicts the
optimality of menu {psi

,Qsi
}. Therefore, it is only possible that p̂s1Qs1 − ps1 = 0 at optimality.

We then consider the case p̂s1Qs1 − ps1 = 0 and show that there exists a menu {p′
si

,Q′
si

} that
induces no speculators but yields the same revenue. Specifically, for item s1 let Q′

s1
=
∫ θ̄2

ps1 /Qs1
(θ −

ps1/Qs1)f(θ)dθ/(F̄ (ps1/Qs1) − F̄ (θ̄2)) and choose p′
s1

such that p′
s1

/Q′
s1

= ps1/Qs1 . For item si, i =
2, . . . ,K, let (p′

si
,Q′

si
) = (psi

,Qsi
). Note that the market clearing equation (6) is achieved at θ̄s =

p̂s = ps1/Qs1 = p̂s1 under (p′
s1

,Q′
s1

) (with Θ in (6) being replaced with θ̄2). Thus, by Lemma 2(ii),
sharing without speculators occurs under {p′

s1
,Q′

s1
}. In other words, menu {p′

si
,Q′

si
} does not induce

any speculators. Next, we prove that {p′
si

,Q′
si

} yields the same revenue as {psi
,Qsi

}. For any type θ

subscriber, ss1

(
d∗

s1
(θ)|θ

)
= 1

2(θ − p̂s1)2 + p̂s1Qs1 − ps1 = 1
2(θ − p̂s1)2 + p̂s1Q′

s1
− p′

s1
due to p′

s1
/Q′

s1
=

ps1/Qs1 = p̂s1 . This indicates that any customer earns the same surplus from (p′
s1

,Q′
s1

) as (ps1 ,Qs1).
Thus, for i ≥ 2, subscribers who choose item si under {psi

,Qsi
} will still purchase it under {p′

si
,Q′

si
}

and generate the same revenue for the provider. Subscribers of item s1 also generate the same
revenue under (p′

s1
,Q′

s1
) as (ps1 ,Qs1). To see this, recall that p′

s1
/Q′

s1
= ps1/Qs1 and Q′

s1
[F̄ (ps1/Qs1)−

F̄ (θ̄2)] =
∫ θ̄2

ps1 /Qs1
(θ − ps1/Qs1)f(θ)dθ. Then, we have

p′
s1

[F̄ (θ̄′
1) − F̄ (θ̄2)] = (p′

s1
/Q′

s1
)[F̄ (p′

s1
/Q′

s1
) − F̄ (θ̄2)]Q′

s1

= (ps1/Qs1)[F̄ (ps1/Qs1) − F̄ (θ̄2)]Q′
s1

= (ps1/Qs1)
∫ θ̄2

ps1 /Qs1

(θ − ps1/Qs1)f(θ)dθ

= (ps1/Qs1)
∫ θ̄2

p̂s1

(θ − p̂s1)f(θ)dθ

= ps1 [F̄ (θ̄1) − F̄ (θ̄2)],

where the second last equality is due to p̂s1 = ps1/Qs1 and the last equality is due to (5) which implies
that Qs1 [F̄ (θ̄1) − F̄ (θ̄2)] =

∫ θ̄2
p̂s1

(θ − p̂s1)f(θ)dθ (with Θ being replaced with θ̄2).
Therefore, it is optimal to offer a K-tier menu such that no speculators exist in equilibrium. □

Lemma TS5. For any K-tier menu of three-part tariffs, denoted by {pnk
,Qnk

, p̂nk
}, k = 1,2 . . . ,K,

it is always possible to construct a revenue-equivalent counterpart such that if customers of types θ˜
and θ̃ choose item nk of the menu, so do all customers of types θ ∈ [θ˜, θ̃].

Proof of Lemma TS5. By Proposition 2 of Bhargava and Gangwar (2018), a menu of K three-part
tariffs, has a revenue-equivalent two-part tariffs if ∂

∂θ

(
u(d|θ)
∂u(d|θ)

∂θ

f(θ)
F̄ (θ)

)
≥ 0. In our case, u(d | θ) = θd− 1

2d2,

then u(d|θ)
∂u(d|θ)

∂θ

f(θ)
F̄ (θ) = (θ − 1

2d) f(θ)
F̄ (θ) increases in θ ≥ d since F (·) has an increasing failure rate. Hence,

∂
∂θ

(
u(d|θ)
∂u(d|θ)

∂θ

f(θ)
F̄ (θ)

)
≥ 0. Then, for any menu of a three-part tariff, we only need to show the result for its

revenue-equivalent counterpart with Qnk
= 0. Then, for any nk, d∗

nk
(θ) = θ − p̂nk

by (10). snk
(d∗

nk
(θ) |

θ) − snj
(d∗

nj
(θ) | θ) = 1

2(θ − p̂nk
)2 − pnk

− ( 1
2(θ − p̂nj

)2 − pnj
= 1

2(p̂nj
− p̂nk

)(2θ − p̂nj
− p̂nk

) − pnk
+ pnj

is monotonous in θ. Following a similar procedure as the proof of Lemma TS3, we can show that if
customers of types θ˜ and θ̃ choose item nk , all customers of types θ ∈ [θ˜, θ̃] do the same. □
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TS3. Subscription Decisions under Uncertainty
We first consider customers’ subscription decisions under the bucket contract.

We start with customers’ consumption decisions first. Assume that a type-θ customer with a
valuation perturbation ϵθ subscribes to the bucket contract (p,Q). We can write her surplus as

s(d | θ + ϵθ) = u(d | θ + ϵθ) − c(d | θ + ϵθ) = (θ + ϵθ)d − 1
2d2 − p, (TS.9)

from which the surplus-maximizing demand can be derived as

d∗(θ + ϵθ) =


0, if θ + ϵθ < 0
θ + ϵθ, if 0 ≤ θ + ϵθ < Q

Q, if θ + ϵθ ≥ Q.
Then, by (TS.9), a type-θ customer’s maximum surplus under (p,Q) is

s(d∗ | θ + ϵθ) = u(d∗ | θ + ϵθ) − c(d∗ | θ + ϵθ) =


−p, if θ + ϵθ < 0
(θ + ϵθ)2/2 − p, if 0 ≤ θ + ϵθ < Q

(θ + ϵθ)Q − Q2/2 − p, if θ + ϵθ ≥ Q.
Whether type-θ customers subscribe to the bucket contract (p,Q) is determined by their expected
surplus. Specifically, type-θ customers subscribe to a bucket contract if and only if

s(p,Q | θ) = Eϵθ
[s(d∗ | θ + ϵθ)]

= P(θ + ϵθ < 0)Eϵθ
[−p | θ + ϵθ < 0] +P(0 ≤ θ + ϵθ < Q)Eϵθ

[
(θ + ϵθ)2/2 − p | 0 ≤ θ + ϵθ < Q

]
+P(θ + ϵθ ≥ Q)Eϵθ

[
(θ + ϵθ)Q − Q2/2 − p | θ + ϵθ ≥ Q

]
= P(0 ≤ θ + ϵθ < Q)Eϵθ

[
(θ + ϵθ)2/2 | 0 ≤ θ + ϵθ < Q

]
+P(θ + ϵθ ≥ Q)Eϵθ

[
(θ + ϵθ)Q − Q∗2/2 | θ + ϵθ ≥ Q

]
− p

= Eϵθ

[
(θ + ϵθ)2/2

]
−P(θ + ϵθ ≥ Q)Eϵθ

[
(θ + ϵθ − Q)2/2 | θ + ϵθ ≥ Q

]
− p.

≥ 0.

For ease of exposition, we thus denote Θ(p,Q) := {θ | s(p,Q | θ) ≥ 0} as the subscriber set under the
bucket contract.

We then consider customers’ subscription decisions under the nonlinear contract in this section.
We start with customers’ consumption decisions first. Assume that a type-θ customer with a

valuation perturbation ϵθ subscribes to the nonlinear contract. We can write her surplus as

sn(dn | θ + ϵθ) = u(dn | θ + ϵθ) − cn(dn | θ + ϵθ) = (θ + ϵθ)dn − 1
2d2

n −
(
pn + p̂n · (dn − Qn)+) .

Similar to Lemma 3, we can derive the surplus-maximizing demand as

d∗
n(θ + ϵθ) =


0, if θ + ϵθ < 0 (TS.11a)
θ + ϵθ, if 0 ≤ θ + ϵθ < Qn (TS.11b)
Qn, if Qn ≤ θ + ϵθ < p̂n + Qn (TS.11c)
θ + ϵθ − p̂n if p̂n + Qn ≤ θ + ϵθ. (TS.11d)

Whether customers subscribe to a nonlinear contract are determined by their expected surplus under
uncertainty. Specifically, type-θ customers subscribe to a nonlinear contract if and only if

sn(pn,Qn, p̂n | θ)
= Eϵθ

[sn(d∗
n | θ + ϵθ)]



6

= P(θ + ϵθ < 0)Eϵθ
[sn(d∗

n) | θ + ϵθ < 0] +P(0 ≤ θ + ϵθ < Qn)Eϵθ
[sn(d∗

n) | 0 ≤ θ + ϵθ < Qn]
+P(Qn ≤ θ + ϵθ < p̂n + Qn)Eϵθ

[sn(d∗
n) | Qn ≤ θ + ϵθ < p̂n + Qn]

+P(p̂n + Qn ≤ θ + ϵθ)Eϵθ
[sn(d∗

n) | p̂n + Qn ≤ θ + ϵθ]
= P(θ + ϵθ < 0)Eϵθ

[−pn | θ + ϵθ < 0] +P(0 ≤ θ + ϵθ < Qn)Eϵθ

[1
2(θ + ϵθ)2 − pn | 0 ≤ θ + ϵθ < Qn

]
+P(Qn ≤ θ + ϵθ < p̂n + Qn)Eϵθ

[
(θ + ϵθ)Qn − 1

2Q2
n − pn | Qn ≤ θ + ϵθ < p̂n + Qn

]
+P(p̂n + Qn ≤ θ + ϵθ)Eϵθ

[1
2(θ + ϵθ − p̂n)2 + p̂nQn − pn | p̂n + Qn ≤ θ + ϵθ

]
= P(0 ≤ θ + ϵθ < Qn)Eϵθ

[1
2(θ + ϵθ)2 | 0 ≤ θ + ϵθ < Qn

]
+P(Qn ≤ θ + ϵθ < p̂n + Qn)Eϵθ

[1
2(θ + ϵθ)Qn − Q2

n | Qn ≤ θ + ϵθ < p̂n + Qn

]
+P(p̂n + Qn ≤ θ + ϵθ)Eϵθ

[1
2(θ + ϵθ − p̂n)2 + p̂nQn | p̂n + Qn ≤ θ + ϵθ

]
− pn (TS.12)

≥ 0.

For ease of exposition, we thus denote Θn(pn,Qn, p̂n) := {θ | sn(pn,Qn, p̂n | θ) ≥ 0} as the subscriber
set under the nonlinear contract.

TS4. Ancillary Results of Section 6
Lemma TS6. Assume that the service provider offers a sharing contract (ps,Qs). There exists a

unique θ̄s such that customers subscribe to the service if and only if θ ≥ θ̄s. The subscriber’s demand
satisfies

d∗
s(θ) =


0, if 0 ≤ θ < p̂s − wuQs

θ−p̂s+wuQs

1+wu
, if p̂s − wuQs ≤ θ < p̂s + Qs

θ−p̂s+woQs

1+wo
, otherwise.

(TS.13)

where p̂s is the market clearing price of a unit of the good.

Proof of Lemma TS6. If a customer decides to subscribe to the service, i.e., ss(ds | θ) ≥ 0, we can
derive her marginal utility change

∂ss

∂ds

=
{

θ − (1 + wu)ds − p̂s + wuQs, if ds < Qs (TS.14)
θ − (1 + wo)ds − p̂s + woQs, if ds ≥ Qs. (TS.15)

First, there must be a unique optimal d∗
s because the marginal utility change is monotone in ds.

We next write d∗
s as function of customer type θ. First, if θ < p̂s − wuQs, it is easy to see ∂ss

∂ds
< 0

and d∗
s = 0. Second, if p̂s − wuQs ≤ θ < p̂s + Qs, it is to see that d∗

s(θ) = θ−p̂s+wuQs

1+wu
< Qs by (TS.14).

Third, if θ ≥ p̂s + Qs, it is to see that d∗
s(θ) = θ−p̂s+woQs

1+wo
≥ Qs by (TS.15).

By (23),

ss(d∗
s(θ) | θ) =



−1
2wuQ2

s − ps + p̂sQs, if 0 ≤ θ < p̂s − wuQs (TS.16)
(θ − p̂s + wuQs)2

2(1 + wu) − 1
2wuQ2

s − ps + p̂sQs, if p̂s − wuQs ≤ θ < p̂s + Qs (TS.17)
(θ − p̂s + woQs)2

2(1 + wo) − 1
2woQ2

s − ps + p̂sQs, if p̂s + Qs ≤ θ ≤ Θ.

which shows that ss(d∗
s(θ) | θ) increases in θ. Hence, there exists a unique θ̄s ≥ 0 such that ss(d∗

s(θ) |
θ) ≥ 0 if and only if θ ≥ θ̄s. □
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Lemma TS7. Assume that the service provider offers a sharing contract (ps,Qs). Let θ̄s represent
the cutoff so that customers of type θ ≥ θ̄s subscribe and p̂∗

s be the equilibrium market clearing price.
(i) The sharing market has an equilibrium with speculators; i.e., some subscribers resell all their

allowances at a unique market clearing price p̂∗
s if and only if p̂∗

s ≥ ps/Qs + wuQs/2 and 0 ≤
θ̄s < p̂∗

s − wuQs. Moreover, p̂∗
s and θ̄s must satisfy the following equality

QsF̄ (θ̄s) =
∫ p̂∗

s+Qs

p̂∗
s−wuQs

θ − p̂∗
s + wuQs

1 + wu

f(θ)dθ +
∫ Θ

p̂∗
s+Qs

θ − p̂∗
s + woQs

1 + wo

f(θ)dθ. (TS.18)

(ii) The sharing market has an equilibrium without speculators; i.e., all subscribers consume some of
the allowance and there is a unique market clearing price p̂∗

s, if and only if p̂∗
s ≤ ps/Qs +wuQs/2

and θ̄s ≥ p̂∗
s − wuQs. Moreover, p̂∗

s and θ̄s must satisfy the following equality

QsF̄ (θ̄s) =
∫ p̂∗

s+Qs

θ̄s

θ − p̂∗
s + wuQs

1 + wu

f(θ)dθ +
∫ Θ

p̂∗
s+Qs

θ − p̂∗
s + woQs

1 + wo

f(θ)dθ. (TS.19)

Proof of Lemma TS7. (i) By Lemma TS6, for speculators who does not consume any data, d∗
s(θ) =

0, which occurs if and only if θ̄s < p̂∗
s −wuQs. For these speculators, the fact that they subscribe to the

service indicates that ss(d∗
s(θ) | θ) = − 1

2wuQ2
s −ps + p̂∗

sQs ≥ 0 by (TS.16). Thus, p̂∗
s ≥ ps/Qs +wuQs/2.

In this case, the total supply and demand of the sharing market are∫ p̂∗
s+Qs

θ̄s

(Qs −d∗
s(θ))f(θ)dθ =

∫ p̂∗
s−wuQs

θ̄s

Qsf(θ)dθ +
∫ p̂∗

s+Qs

p̂∗
s−wuQs

(
Qs − θ − p̂∗

s + wuQs

1 + wu

)
f(θ)dθ (TS.20)

and ∫ Θ

p̂∗
s+Qs

(d∗
s(θ) − Qs)f(θ)dθ =

∫ Θ

p̂∗
s+Qs

(
θ − p̂∗

s + woQs

1 + wo

− Qs

)
f(θ)dθ, (TS.21)

respectively. Equating (TS.20) and (TS.21) to attain the market clearing condition, we obtain
(TS.18).

(ii) By Lemma TS6, the fact that there are no speculators means that d∗
s(θ) ≥ 0 for all subscribers,

which occurs if and only if θ̄s ≥ p̂∗
s − wuQs. For these subscribers, ss(d∗

s(θ) | θ) ≥ 0. In particular, by
(TS.17), for the subscriber of type θ̄s,

ss(d∗
s(θ̄s) | θ̄s) = (θ̄s − p̂∗

s + wuQs)2

2(1 + wu) − 1
2wuQ2

s − ps + p̂∗
sQs = 0

or equivalently
(θ̄s − p̂∗

s + wuQs)2

2(1 + wu) = 1
2wuQ2

s + ps − p̂∗
sQs ≥ 0.

Thus, p̂∗
s ≤ ps/Qs + wuQs/2. In this case, the total supply and demand of the sharing market are∫ p̂∗

s+Qs

θ̄s

(Qs − d∗
s(θ))f(θ)dθ =

∫ p̂∗
s+Qs

θ̄s

(
Qs − θ − p̂∗

s + wuQs

1 + wu

)
f(θ)dθ (TS.22)

and ∫ Θ

p̂∗
s+Qs

(d∗
s(θ) − Qs)f(θ)dθ =

∫ Θ

p̂∗
s+Qs

(
θ − p̂∗

s + woQs

1 + wo

− Qs

)
f(θ)dθ, (TS.23)

respectively. Equating (TS.22) and (TS.23) to attain the market clearing condition, we obtain
(TS.19). □

Proposition TS1. Assume that the service provider offers a sharing contract (ps,Qs).
(i) The sharing market has a unique equilibrium with speculators if and only if 0 ≤ Qs < Qs(ps,Qs);
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(ii) The sharing market has a unique equilibrium without speculators if and only if Qs ≥ Qs(ps,Qs)
and ps/Qs + Qs/2 ≤ Θ,

where Qs(ps,Qs) =

∫ ps
Qs

+ wuQs
2 +Qs

ps
Qs

− wuQs
2

θ−ps/Qs+wuQs/2
1+wu

f(θ)dθ+
∫ Θ

ps
Qs

+ wuQs
2 +Qs

θ−ps/Qs−wuQs/2+woQs
1+wo

f(θ)dθ

F̄( ps
Qs

− wuQs
2 ) .

Proof of Proposition TS1. For ease of exposition, we define g(y) =
∫ y+Qs

y−wuQs

θ−y+wuQs

1+wu
f(θ)dθ +∫ Θ

y+Qs

θ−y+woQs

1+wo
f(θ)dθ. Note that g(y) strictly decreases in y ≥ wuQs. Moreover, 0 ≤ g(y) ≤∫ y+Qs

y−wuQs
θf(θ)dθ +

∫ Θ
y+Qs

θ−y+woQs

1+wo
f(θ)dθ ≤

∫ y+Qs

y−wuQs
θf(θ)dθ +

∫ Θ
y+Qs

θf(θ)dθ ≤
∫ y+Qs

0 θf(θ)dθ +∫ Θ
y+Qs

θf(θ)dθ =E[θ], where the second inequality is due to −y +wuQs ≤ 0 ≤ woθ, the third inequality
is due to −y + woQs ≤ wo(y + Qs), and last third inequality is due to y ≥ wuQs.

(i) Necessity. Suppose that the sharing market has an unique equilibrium with speculators. By
Lemma TS7(i), we have 0 ≤ θ̄s < p̂∗

s − wuQs and p̂∗
s ≥ ps/Qs + wuQs/2. Consider two cases: θ̄s = 0

and θ̄s > 0.
If θ̄s = 0,

Qs =QsF̄ (θ̄s) =
∫ p̂∗

s+Qs

p̂∗
s−wuQs

θ − p̂∗
s + wuQs

1 + wu

f(θ)dθ +
∫ Θ

p̂∗
s+Qs

θ − p̂∗
s + woQs

1 + wo

f(θ)dθ

≤Qs(ps,Qs)F̄ (ps/Qs − wuQs/2) < Qs(ps,Qs),

where the first inequality is due to g(y) strictly decreases in y ≥ wuQs and p̂∗
s ≥ ps/Qs + wuQs/2.

If θ̄s > 0, we first prove p̂∗
s = ps/Qs + wuQs/2 by contradiction. Suppose p̂∗

s > ps/Qs + wuQs/2. For
customers of type θ < θ̄s, if they subscribe, d∗

s(θ) = 0 and ss(d∗
s(θ) | θ) = − 1

2wuQ2
s − ps + p̂∗

sQs > 0,
which contradicts with the fact that only customers with θ ≥ θ̄s subscribe. Since 0 ≤ θ̄s < p̂∗

s − wuQs,
then QsF̄ (θ̄s) =

∫ p̂∗
s+Qs

p̂∗
s−wuQs

θ−p̂∗
s+wuQs

1+wu
f(θ)dθ +

∫ Θ
p̂∗

s+Qs

θ−p̂∗
s+woQs

1+wo
f(θ)dθ > QsF̄ (p̂∗

s − wuQs) due to the
monotonicity of F̄ (·). Note p̂∗

s = ps/Qs − wuQs, we have∫ p̂∗
s+Qs

p̂∗
s−wuQs

θ − p̂∗
s + wuQs

1 + wu

f(θ)dθ +
∫ Θ

p̂∗
s+Qs

θ − p̂∗
s + woQs

1 + wo

f(θ)dθ > QsF̄ (p̂∗
s − wuQs) ⇐⇒ Qs < Qs.

Sufficiency. Suppose 0 ≤ Qs < Qs. To ensure the existence of a sharing equilibrium with speculators,
we need to show that (TS.18) has a unique solution p̂s ≥ 0 and there exists a unique 0 ≤ θ̄s < p̂∗

s −wuQs

such that ss(d∗
s(θ̄s) | θ̄s) ≥ 0, where the equality is achieved if θ̄s = 0. Let us consider two cases: (a)

0 ≤ Qs < g(ps/Qs + wuQs/2), and (b) g(ps/Qs + wuQs/2) ≤ Qs < Qs.
(a) If 0 ≤ Qs ≤ g(ps/Qs + wuQs/2), we first prove θ̄s > 0 does not occur in equilibrium. Then, we

construct a sharing with speculators equilibrium with θ̄s = 0 and show that this is the only possible
equilibrium.

Suppose θ̄s > 0 in equilibrium. From the proof of necessity, we know p̂∗
s = ps/Qs +wuQs/2 if θ̄s > 0.

Then,

QsF̄ (θ̄s) < Qs ≤ g(ps/Qs + wuQs/2) = g(p̂∗
s),

which implies (TS.18) has no solution. Hence, it is not possible to have θ̄s > 0 in equilibrium.
Next let θ̄s = 0 and we show that there exists a unique p̂∗

s > ps/Qs +wuQs/2 such that the market-
clearing condition (TS.18) holds. Note that QsF̄ (θ̄s = 0) = Qs. Hence, we can rewrite (TS.18) as
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Qs = g(p̂∗
s). Since g(p̂s) ∈ [0,E[θ]] for p̂s ≥ wuQs, there must exists a p̂∗

s such that Qs = g(p̂s) has a
solution for a given 0 ≤ Qs < g(ps/Qs + wuQs/2) ≤ E[θ]. Moreover, the strict monotonicity implies
that such a p̂∗

s must be unique and p̂∗
s > ps/Qs + wuQs/2 since Qs = g(p̂∗

s) < g(ps/Qs + wuQs/2).
At last, we show that ss(d∗

s(θ̄s) | θ̄s) > 0. Since θ̄s = 0 < ps/Qs + wuQs/2 < p̂∗
s, d∗

s(θ̄s = 0) = 0 By
Lemma TS6. Hence, ss(d∗

s(θ̄s = 0) | θ̄s = 0) = − 1
2wuQ2

s − ps + p̂∗
sQs > 0 by (TS.16).

(b) g(ps/Qs + wuQs/2) < Qs < Qs. We first prove that θ̄s ̸= 0 when sharing with speculators
emerges in equilibrium. Suppose θ̄s = 0. This means type-θ̄s customers do not value the service at
all. They, thus, consume nothing even though they subscribe to it. Hence, d∗

s(θ̄s) = 0 and ss(d∗
s(θ̄s) |

θ̄s) = − 1
2wuQ2

s − ps + p̂∗
sQs ≥ 0, which implies p̂∗

s ≥ ps/Qs + wuQs/2. Then, we have

QsF̄ (θ̄s) = Qs > g(ps/Qs + wuQs/2) ≥ g(p̂∗
s),

which shows that (TS.18) has no solution if θ̄s = 0.
We first construct a pair of (p̂∗

s, θ̄s) that satisfies (TS.18) and ss(d∗
s(θ̄s) | θ̄s) = 0 simultaneously.

Let p̂∗
s = ps/Qs + wuQs/2 and we shall show that there exists a unique θ̄s > 0 such that the market

clearing condition (TS.18) holds. To see this, rewrite (TS.18)

QsF̄ (θ̄s) = g(p̂∗
s) = g(ps/Qs + wuQs/2).

Since g(ps/Qs + wuQs/2) < Qs and F̄ (θ) strictly decreases in θ, QsF̄ (θ̄s) = g(ps/Qs + wuQs/2) holds
for a unique θ̄s > 0.

We next show θ̄s < p̂∗
s = ps/Qs + wuQs/2. Since QsF̄ (θ̄s) = g(p̂∗

s) and Qs < Qs = g(ps/Qs +
wuQs/2)/F̄ (ps/Qs − wuQs/2),

g(p̂∗
s) = QsF̄ (θ̄s) < QsF̄ (θ̄s) = g(ps/Qs + wuQs/2)F̄ (θ̄s)/F̄ (ps/Qs − wuQs/2)

= g(p̂∗
s)F̄ (θ̄s)/F̄ (ps/Qs − wuQs/2),

(TS.24)

where the last equality is due to p̂∗
s = ps/Qs + wuQs/2. (TS.24) implies that F̄ (θ̄s)/F̄ (ps/Qs +

wuQs/2) = F̄ (θ̄s)/F̄ (p̂∗
s) > 1 and thus θ̄s < p̂∗

s = ps/Qs +wuQs/2 due to the strict monotonicity of F̄ (·).
Since θ̄s < p̂∗

s − wuQs, d∗
s(θ̄s) = 0 By Lemma TS6. Hence, ss(d∗

s(θ̄s) | θ̄s) = − 1
2wuQ2

s − ps + p̂∗
sQs = 0

by (TS.16).
So far, we have a pair of (p̂∗

s, θ̄s) that arises as a sharing equilibrium with speculators. We next show
that this is the only sharing equilibrium with speculators. First, we show that there does not exist
other equilibrium with θ̄s > 0. Assume there is another sharing equilibrium with speculators with
θ̄′

s ̸= θ̄s > 0. From the proof of necessity, we know that for θ̄′
s > 0 the corresponding p̂∗′

s must equal to
ps/Qs + wuQs/2. However, when we set p̂∗

s = ps/Qs + wuQs/2 in the constructive proof above, it is
shown that (TS.24) holds at a unique θ̄s > 0. Therefore, we conclude (p̂∗′

s , θ̄′
s) = (p̂∗

s, θ̄s). Second, we
show that there exists no equilibrium with θ̄s = 0. Suppose θ̄s = 0. This means type-θ̄s customers do
not value the service at all. They, thus, consume nothing even though they subscribe to it. Hence,
d∗

s(θ̄s) = 0 and ss(d∗
s(θ̄s) | θ̄s) = − 1

2wuQ2
s − ps + p̂∗

sQs ≥ 0, which implies p̂∗
s ≥ ps/Qs + wuQs/2. Then,

we have

QsF̄ (θ̄s) = Qs > g(ps/Qs + wuQs/2) ≥ g(p̂∗
s),
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which shows that (TS.18) has no solution if θ̄s = 0. Thus, there is no speculating equilibrium with
θ̄s = 0.

(ii) Necessity. Suppose that the sharing market has an unique equilibrium without specu-
lators. Let p̂∗

s ≥ 0 be the market clearing price. First, we show
(∫ p̂∗

s+Qs

θ̄s

θ−p̂∗
s+wuQs

1+wu
f(θ)dθ +∫ Θ

p̂∗
s+Qs

θ−p̂∗
s+woQs

1+wo
f(θ)dθ

)/
F̄ (θ̄s) is increasing in θ̄s. Consider the first derivative in θ̄s∫ p̂∗

s+Qs

θ̄s

θ−p̂∗
s+wuQs

1+wu
f(θ)dθ +

∫ Θ
p̂∗

s+Qs

θ−p̂∗
s+woQs

1+wo
f(θ)dθ

F̄ (θ̄s)

′

=
− θ̄s−p̂∗

s+wuQs

1+wu
F̄ (θ̄s) +

∫ p̂∗
s+Qs

θ̄s

θ−p̂∗
s+wuQs

1+wu
f(θ)dθ +

∫ Θ
p̂∗

s+Qs

θ−p̂∗
s+woQs

1+wo
f(θ)dθf(θ)dθ

F̄ 2(θ̄s)
f(θ̄s)

≥
− θ̄s−p̂∗

s+wuQs

1+wu
F̄ (θ̄s) +

∫ p̂∗
s+Qs

θ̄s

θ̄s−p̂∗
s+wuQs

1+wu
f(θ)dθ +

∫ Θ
p̂∗

s+Qs
Qsf(θ)dθf(θ)dθ

F̄ 2(θ̄s)
f(θ̄s)

=
∫ Θ

p̂∗
s+Qs

Qs − θ̄s−p̂∗
s+wuQs

1+wu
f(θ)dθf(θ)dθ

F̄ 2(θ̄s)
f(θ̄s) > 0,

where the first inequality is due to θ ≥ θ̄s for θ ∈ [θ̄s, p̂
∗
s + Qs] and θ ≥ p̂∗

s + Qs for θ ∈ [p̂∗
s + Qs,Θ], the

second inequality is due to θ̄s ≤ p̂∗
s + Qs.

Second, we show θ̄s ≥ ps/Qs − wuQs/2. Let (TS.17) equals to zero, we have p̂∗
s = θ̄s +√

(1 + wu)Q2
s − 2(1 + wu)θ̄sQs + 2(1 + wu)ps − Qs. Recall that θ̄s ≥ p̂∗

s − wuQs by Lemma TS7(ii).
Therefore,

θ̄s ≥ p̂∗
s −wuQs ⇐⇒

√
(1 + wu)Q2

s − 2(1 + wu)θ̄sQs + 2(1 + wu)ps ≤ (1+wu)Qs ⇐⇒ θ̄s ≥ ps/Qs −wuQs/2.

Third, we show Qs ≥ Qs. By (TS.19), Qs =
(∫ p̂∗

s+Qs

θ̄s

θ−p̂∗
s+wuQs

1+wu
f(θ)dθ+

∫ Θ
p̂∗

s+Qs

θ−p̂∗
s+woQs

1+wo
f(θ)dθ

)/
F̄ (θ̄s),

then it is equivalent to show∫ p̂∗
s+Qs

θ̄s

θ−p̂∗
s+wuQs

1+wu
f(θ)dθ +

∫ Θ
p̂∗

s+Qs

θ−p̂∗
s+woQs

1+wo
f(θ)dθ

F̄ (θ̄s)

≥
∫ p̂∗

s+Qs

ps/Qs−wuQs/2
θ−p̂∗

s+wuQs

1+wu
f(θ)dθ +

∫ Θ
p̂∗

s+Qs

θ−p̂∗
s+woQs

1+wo
f(θ)dθ

F̄ (ps/Qs − wuQs/2)

≥
∫ ps/Qs+wuQs/2+Qs

ps/Qs−wuQs/2
θ−ps/Qs+wuQs/2

1+wu
f(θ)dθ +

∫ Θ
ps/Qs+wuQs/2+Qs

θ−ps/Qs−wuQs/2+woQs

1+wo
f(θ)dθ

F̄ (ps/Qs − wuQs/2)
= Qs,

where the first inequality is due to
(∫ p̂∗

s+Qs

θ̄s

θ−p̂∗
s+wuQs

1+wu
f(θ)dθ +

∫ Θ
p̂∗

s+Qs

θ−p̂∗
s+woQs

1+wo
f(θ)dθ

)/
F̄ (θ̄s) is

increasing in θ̄s and θ̄s ≥ ps/Qs − wuQs/2, the second inequality is due to p̂∗
s ≤ ps/Qs + wuQs/2 and∫ p̂∗

s+Qs

ps/Qs−wuQs/2
θ−p̂∗

s+wuQs

1+wu
f(θ)dθ +

∫ Θ
p̂∗

s+Qs

θ−p̂∗
s+woQs

1+wo
f(θ)dθ is decreasing in p̂∗

s.
Last, we prove ps/Qs + Qs/2 ≤ Θ by contradiction. Suppose ps/Qs + Qs/2 > Θ. Let l(θ) = θ +√
(1 + wu)Q2

s − 2(1 + wu)Qsθ + 2(1 + wu)ps, then

l(Θ) = Θ +
√

(1 + wu)Q2
s − 2(1 + wu)QsΘ + 2(1 + wu)ps

> Θ +
√

(1 + wu)Q2
s − 2(1 + wu)Qs (ps/Qs + Qs/2) + 2(1 + wu)ps = Θ,

which implies p̂∗
s = l(θ̄s) − Qs > Θ − Qs. We thus reach a contradiction since p̂∗

s + Qs ≤ Θ.
Sufficiency. Suppose Qs ≥ Qs and ps/Qs + Qs/2 ≤ Θ. To ensure the existence of a sharing mar-

ket without speculators with a unique market clearing price, we need to show that (TS.19) and
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(θ−p̂∗

s+wuQs)2

2(1+wu) − 1
2wuQ2

s −ps + p̂∗
sQs = 0 simultaneously hold with a unique set of p̂∗

s and θ̄s ≥ p̂∗
s −wuQs.

Let

p̂∗
s = l(θ̄s) − Qs = θ̄s +

√
(1 + wu)Q2

s − 2(1 + wu)θ̄sQs + 2(1 + wu)ps − Qs, (TS.25)

which implies (θ−p̂∗
s+wuQs)2

2(1+wu) − 1
2wuQ2

s − ps + p̂∗
sQs = 0. We next show there exists a unique solution

ps/Qs − wuQs/2 ≤ θ̄s < ps/Qs + Qs/2 ≤ Θ such that

Qs =
(∫ p̂∗

s+Qs

θ̄s

θ − p̂∗
s + wuQs

1 + wu

f(θ)dθ +
∫ Θ

p̂∗
s+Qs

θ − p̂∗
s + woQs

1 + wo

f(θ)dθ

)/
F̄ (θ̄s),

which is equivalent to (TS.19). We can verify this by three steps in the followings. First,
we show L(θ, l(θ) − Qs) is strictly increasing in θ ≥ ps/Qs − wuQs/2, where L(θ, p̂∗

s) =
(
∫ p̂∗

s+Qs

θ
θ−p̂∗

s+wuQs

1+wu
f(θ)dθ +

∫ Θ
p̂∗

s+Qs

θ−p̂∗
s+woQs

1+wo
f(θ)dθ)/F̄ (θ). Recall L(θ, p̂∗

s) is strictly increasing in θ

and decreasing in p̂∗
s, then it is sufficiently to prove l(θ) is strictly decreasing in θ ≥ ps/Qs − wuQs/2.

That is

l′(θ) = 1 − (1 + wu)Qs√
(1 + wu)Q2

s − 2(1 + wu)θ̄sQs + 2(1 + wu)ps

≤ 1 − (1 + wu)Qs√
(1 + wu)Q2

s − 2(1 + wu) (ps/Qs − wuQs/2)Qs + 2(1 + wu)ps

= 0.

Second, we show Qs ≥ L(ps/Qs − wuQs/2, l(ps/Qs − wuQs/2) − Qs). This comes from L(ps/Qs −
wuQs/2, l(ps/Qs − wuQs/2) − Qs) = Qs and Qs ≥ Qs immediately. Third, we show Qs < L(ps/Qs +
Qs/2, l(ps/Qs + Qs/2) − Qs). Note l(ps/Qs + Qs/2) = ps/Qs + Qs/2, then L(ps/Qs + Qs/2, l(ps/Qs +
Qs/2) − Qs) =

∫ Θ
ps/Qs+Qs/2

θ−ps/Qs+Qs/2+woQs

1+wo
f(θ)dθ/F̄ (ps/Qs + Qs/2) > Qs due to the Mean Value

Theorem.
At last, we show θ̄s ≥ p̂∗

s − wuQs. By (TS.25),

p̂∗
s =θ̄s +

√
(1 + wu)Q2

s − 2(1 + wu)θ̄sQs + 2(1 + wu)ps − Qs

≤θ̄s +
√

(1 + wu)Q2
s − 2(1 + wu)(ps/Qs − wuQs/2))Qs + 2(1 + wu)ps − Qs = θ̄s − wuQs,

where the inequality is due to θ̄s ≥ ps/Qs − wuQs/2. □

Lemma TS8. Assume that the service provider offers a nonlinear contract (pn,Qn, p̂n). If a type-θ
customer subscribes, her optimal consumption level satisfies

d∗
n(θ) =


θ+wuQn

1+wu
, if 0 ≤ θ < Qn

Qn, if Qn ≤ θ < p̂n + Qn

θ+woQn−p̂n

1+wo
, otherwise.

(TS.26)

Proof of Lemma TS8. We can write sn(dn | θ) in (25) as

sn(dn | θ) =

− 1
2(1 + wu)d2

n + (θ + wuQn)dn − 1
2wuQ2

n − pn, if dn < Qn

− 1
2(1 + wo)d2

n + (θ + woQn − p̂n)dn − 1
2woQ2

n + p̂nQn − pn, if dn ≥ Qn.

Note that sn(dn | θ) is concave in dn when dn < Qn and dn ≥ Qn, respectively. Then, conditional on
the fact that a customer has already subscribed to the service, i.e., sn(dn | θ) ≥ 0, we can derive her
demand by the first order condition (FOC). Hence,

∂sn

∂dn

=
{

θ + wuQn − (1 + wu)dn = 0, if dn < Qn (TS.27)
θ + woQn − p̂n − (1 + wo)dn = 0, if dn ≥ Qn (TS.28)
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which implies

d∗
n =


θ + wuQn

1 + wu

, if dn < Qn (TS.29)
θ + woQn − p̂n

1 + wo

, if dn ≥ Qn. (TS.30)

We next write d∗
n as function of customer type θ. First, if θ < Qn, it is easy to see that d∗

n(θ) =
θ+wuQn

1+wu
< Qn by (TS.29). Second, if θ ≥ p̂n + Qn, then by (TS.30) we have d∗

n(θ) = θ+woQn−p̂n

1+wo
≥ Qn.

At last, we show that d∗
n(θ) = Qn if Qn ≤ θ < p̂n + Qn:

(i) Assume a type-θ customer consumes dn < Qn. By (TS.27), ∂sn
∂dn

= θ + wuQn − (1 + wu)dn ≥
Qn + wuQn − (1 + wu)dn = (1 + wu)(Qn − dn) > 0, then the customer prefers increasing her
demand to Qn, i.e., d∗

n(θ) = Qn.
(ii) Assume a type-θ customer consumes dn ≥ Qn. By (TS.28), ∂sn

∂dn
= θ + woQn − p̂n − (1 + wo)dn <

p̂n + Qn + woQn − p̂n − (1 + wo)dn = (1 + wo)(Qn − dn) ≤ 0, then the customer prefers decreasing
her demand to Qn, i.e., d∗

n(θ) = Qn. □

Lemma TS9. Assume that the service provider offers a nonlinear contract (pn,Qn, p̂n). A nonzero
fraction of customers subscribe if and only if pn ≤ 1

2(Θ − p̂n)2 + p̂nQn. Specifically, there exists a
unique θ̄n such that customers subscribe to the service if and only if θ ≥ θ̄n, where

θ̄n =


√

(1 + wu)(2pn + wuQ2
n) − wuQn, if 0 ≤ pn < Q2

n
2

pn/Qn + Qn/2, if Q2
n

2 ≤ pn < p̂nQn + Q2
n

2

p̂n +
√

(1 + wo)(2(pn − p̂nQn) + woQ2
n) − woQn, if p̂nQn + Q2

n
2 ≤ pn ≤ (Θ−p̂n+woQn)2

2(1+wo) + p̂nQn − woQ2
n

2 .

(TS.31)

Proof of Lemma TS9. By Lemma TS8, we can write sn(dn | θ) in (25) as

sn(d∗
n(θ) | θ) =



(θ + wuQn)2

2(1 + wu) − 1
2wuQ2

n − pn, if 0 ≤ θ < Qn (TS.32)

θQn − 1
2Q2

n − pn, if Qn ≤ θ < p̂n + Qn (TS.33)
(θ + woQn − p̂n)2

2(1 + wo) − 1
2woQ2

n − (pn − p̂nQn), if p̂n + Qn ≤ θ ≤ Θ. (TS.34)

If pn > (Θ−p̂n+woQn)2

2(1+wo) + p̂nQn − woQ2
n

2 , sn(d∗
n(θ = Θ) | θ = Θ) < 0. Since sn(d∗

n(θ) | θ) strictly increases
in θ, no customers earn positive surplus and hence there are no subscribers. On the contrary, if
0 ≤ pn ≤ (Θ−p̂n+woQn)2

2(1+wo) + p̂nQn − woQ2
n

2 , sn(d∗
n(θ = 0) | θ = 0) ≤ 0 and sn(d∗

n(θ = Θ) | θ = Θ) ≥ 0.
Therefore, there exists a unique θ̄n such that sn(d∗

n(θ) | θ) = 0 and customers subscribe to the service
if and only if θ ≥ θ̄n.

Next, we characterize θ̄n. First, let us consider the case 0 ≤ pn < 1
2Q2

n. For any customer of type
θ ∈ [Qn, p̂n + Qn), sn(d∗

n(θ) | θ) = θQn − 1
2Q2

n − pn > θQn − Q2
n ≥ 0 by eq. (TS.33). For any customer

of type θ ∈ [p̂n + Qn,Θ], sn(d∗
n(θ) | θ) = (θ+woQn−p̂n)2

2(1+wo) − 1
2woQ2

n − (pn − p̂nQn) ≥ Q2
n/2 + p̂nQn − pn > 0

by eq. (TS.34). In other words, all customers of types θ ∈ [Qn,Θ] choose to subscribe. Thus, the
continuity of sn implies θ̄n < Qn: setting sn(d∗

n(θ) | θ) in eq. (TS.32) to be zero, we have θ̄n =√
(1 + wu)(2pn + wuQ2

n) − wuQn.



13

Second, consider 1
2Q2

n ≤ pn < p̂nQn + 1
2Q2

n. For any customer of type θ ∈ [0,Qn), sn(d∗
n(θ) | θ) =

(θ+wuQn)2

2(1+wu) − 1
2wuQ2

n − pn < 1
2Q2

n − pn ≤ 0 by eq. (TS.32). In other words, no customers of types θ ∈
[0,Qn) choose to subscribe. For any customer of type θ ∈ [p̂n + Qn,Θ], sn(d∗

n(θ) | θ) = (θ+woQn−p̂n)2

2(1+wo) −
1
2woQ2

n − (pn − p̂nQn) ≥ 1
2Q2

n − (pn − p̂nQn) > 0 by eq. (TS.34). In other words, all customers of types
θ ∈ [p̂n + Qn,Θ] choose to subscribe. Thus, the continuity of sn implies Qn ≤ θ̄n < p̂n + Qn: setting
sn(d∗

n(θ) | θ) in eq. (TS.33) to be zero, we have θ̄n = pn/Qn + Q2
n/2.

At last, consider p̂nQn + 1
2Q2

n ≤ pn ≤ (Θ−p̂n+woQn)2

2(1+wo) + p̂nQn − woQ2
n

2 . For any customer of type
θ ∈ [0,Qn), sn(d∗

n(θ) | θ) = (θ+wuQn)2

2(1+wu) − 1
2wuQ2

n − pn < 1
2Q2

n − pn ≤ 0 by eq. (TS.32). In other words,
no customers of types θ ∈ [0,Qn) choose to subscribe. For any customer of type θ ∈ [Qn, p̂n + Qn),
sn(d∗

n(θ) | θ) = θQn − 1
2Q2

n − pn < (p̂n + Qn)Qn − 1
2Q2

n − pn = p̂nQn + 1
2Q2

n − pn ≤ 0 by eq. (TS.33).
In other words, no customers of types θ ∈ [Qn, p̂n + Qn) choose to subscribe. Thus, the continuity
of sn implies p̂n + Qn ≤ θ̄n ≤ Θ: setting sn(d∗

n(θ) | θ) in eq. (TS.34) to be zero, we have θ̄n = p̂n +√
(1 + wo)(2(pn − p̂nQn) + woQ2

n) − woQn. □

Lemma TS10. (i) For any uniform distribution on [0, a], denote Πa
s and Πa

n as the optimal
revenue under sharing and nonlinear contract, respectively. Then Πa

s = a2Π1
s and Πa

n = a2Π1
n.

(ii) For any exponential distribution with probability density function f(θ) = λe−λθ, denote Πλ
s and

Πλ
n as the optimal revenue under sharing and nonlinear contract, respectively. Then Πλ

s = Π1
s/λ2

and Πλ
n = Π1

n/λ2.

Proof of Lemma TS10. (i) First, we consider the sharing contract. Denote the optimal contract
(pa

s ,Qa
s) with the resulting equilibrium market clearing price p̂a

s , where pa
s , Qa

s , p̂a
s are given by (24).

Note f(θ) = 1/a and F̄ (θ) = (a − θ)/a, then (24) is equivalent to
(

p̂s/a

1+wu
+ 1−p̂s/a−Qs/a

1+wo

)(
(1 − Qs/a)(p̂s/a − (1 + wu)Qs/a) + (p̂s/a)2+(1+wu)(Qs/a)2

2

)
= (p̂s/a)2(1−Qs/a)

1+wu
,

(Qs/a)(1 − Qs/a) = (wu−wo)(Qs/a)2

2 − (Qs/a−p̂s/a+wuQs/a)2

2(1+wu) + (1−p̂s/a+woQs/a)2

2(1+wo) ,

p̂s/a =
√

(1 + wu)(2ps/a2 − (Qs/a)2).
Thus pa

s/a2, Qa
s/a, and p̂a

s/a are independent on a. Let xs = pa
s/a2 and ys = Qa

s/a. Recall the threshold
of subscribing under optimal nonlinear contract θ̄a

s equals to Qa
s by Proposition 8(ii). Hence, the

optimal revenue is Πa
s = pa

s F̄ (Qa
s) = a2xs(1 − ys) = a2Π1

s.
Second, we consider the nonlinear contract. Denote θ̄a

n as the threshold of subscribing under optimal
nonlinear contract, which is given by

(1 + wo)2θ̄2
n −

(∫ Θ
θ̄n

θf(θ)dθ

F̄ (θ̄n) − θ̄n

)2

2
[
(1 + wo)2θ̄n −

∫ Θ
θ̄n

θf(θ)dθ

F̄ (θ̄n) + θ̄n

] = F̄ (θ̄n)
f(θ̄n)

due to Proposition 9(i). Note f(θ) = 1/a and F̄ (θ) = (a−θ)/a, then the equation above is equivalent to
[12(1+wo)2 +3](θ̄n/a)2 − [8(1+wo)2 +6](θ̄n/a)+3 = 0. Thus θ̄a

n/a is independent on a. Let xn = θ̄a
n/a,

then the optimal overage rate p̂a
n = a(1−xn)

2(1+wo) by Proposition 9(ii). From the proof of Theorem 4(i), the
optimal revenue under nonlinear contract is Πa

n = ( 1
2 θ̄a2

n + 1
2 p̂a2

n )F̄ (θ̄a
n) = a2

2 (x2
n + (1−xn)2

4(1+wo)2 )(1 − xn) =
a2Π1

n.
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(ii) First, we consider the sharing contract. Denote the optimal contract (pλ
s ,Qλ

s ) with the resulting
equilibrium market clearing price p̂λ

s , where pλ
s , Qλ

s , p̂λ
s are given by (24). Note f(θ) = λe−λθ and

F̄ (θ) = e−λθ, then (24) is equivalent to
(

1−e−λp̂s

1+wu
+ e−λp̂s

1+wo

)(
λp̂s − (1 + wu)λQs + (λp̂s)2+(1+wu)(λQs)2

2

)
= (λp̂s)2

1+wu
,

λQs = (1+wu)λQs−λp̂s+1−e−λp̂s

1+wu
+ e−λp̂s

1+wo
,

λp̂s =
√

(1 + wu)(2λ2ps − (λQs)2).
Thus λ2pλ

s , λQλ
s , and λp̂λ

s are independent on λ. Let xs = λ2pλ
s and ys = λQλ

s . Recall the threshold
of subscribing under optimal nonlinear contract θ̄λ

s equals to Qλ
s by Proposition 8(ii). Hence, the

optimal revenue is Πλ
s = pλ

s F̄ (Qλ
s ) = xse

−ys/λ2 = Π1
s/λ2.

Second, we consider the nonlinear contract. Denote θ̄λ
n as the threshold of subscribing under optimal

nonlinear contract, which is given by

(1 + wo)2θ̄2
n −

(∫ Θ
θ̄n

θf(θ)dθ

F̄ (θ̄n) − θ̄n

)2

2
[
(1 + wo)2θ̄n −

∫ Θ
θ̄n

θf(θ)dθ

F̄ (θ̄n) + θ̄n

] = F̄ (θ̄n)
f(θ̄n)

due to Proposition 9(i). Note f(θ) = λe−λθ and F̄ (θ) = e−λθ, then the equation above is equivalent to
(1 + wo)2(λθ̄λ

n)2 − 2(1 + wo)2λθ̄λ
n + 1. Thus λθ̄λ

n is independent on λ. Let xn = λθ̄λ
n, then the optimal

overage rate p̂λ
n = 1

λ(1+wo) by Proposition 9(ii). From the proof of Theorem 4(i), the optimal revenue
under nonlinear contract is Πλ

n = ( 1
2 θ̄λ2

n + 1
2 p̂λ2

n )F̄ (θ̄λ
n) = 1

2λ2 (x2
n + 1

(1+wo)2 )e−xn = Π1
n/λ2. □
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